# **Resolved versus parameterized boundary layer plumes : A parametrization oriented conditional sampling in LES**

Fleur Couvreux, Catherine Rio, Frédéric Hourdin, Emilie Perraud, Arnaud Jam



ARM cumulus

IHOP thermals





From resolved thermals ... to parametrized thermals

# **Boundary layer thermals**

How to isolate clouds and thermals from their environment?

clouds: occurrence of liquid water

dry thermals under 0.6zi: excess of  $\theta v$ 

in the transition layer and the upper boundary layer: ?

Can we find a criterion characterizing thermals continuously from the surface to cloud top?



- 1. A conditional sampling to select thermals in LES
- 2. How to use this CS to improve EDMF schemes?2.a entrainment/detrainment definition2.b cloud scheme

# **Structures explicitly resolved in LES**

#### Thermals in cloud-free CBL

#### Cumulus clouds



LES: adapted tool to study coherent structures (thermals, clouds)
 LES: provide 4D variables, low sensitivity to parameterizations

# A conditional sampling to characterize thermals continuously from the surface to cloud top



# **Selected structures in LES**



#### **Evaluation of the conditional sampling on clear CBL**



### **Evaluation of the conditional sampling on cloudy CBL**



provide thermal characteristics from the surface to the top of the clouds

# **Application Contribution of thermals to fluxes and variances**

#### Flux and variance of rt



CS explains ~ 100% of the flux in the cloud layer, ~ 60-80% in the sub-cloud layer ~ 30-40% of the variance

## Sensitivity tests to the definition of the conditional sampling



# The question of the mixing rates



# **Application**

# **Evaluation of internal variables of parameterizations**

**Equation for the vertical velocity** 



$$\varepsilon = 0.4 \delta$$
  $\varepsilon = \max(0, \frac{\beta_1}{w_u} \frac{\partial w_u}{\partial z}) = \max(0, \frac{1}{1 + \beta_1} (a_1 \frac{B}{w_u^2} - b))$   
moisture contrast

### Validation of the formulation in LES



# **Introduction of the formulation in the thermal plume model**



Entrainment decreases from the surface to the top of the mixed layer and from cloud base to cloud top

> Detrainment increases near cloud base and top

## **Thermals characteristics**



» Better representation of the vertical profile of vertical velocity and thermals coverage

#### Flux and variance of liquid potential temperature



Flux unchangedBetter representation of the variance

#### **Concerning the cloud scheme :**



Perraud et al., 2011

» Bi-gaussian describes the subgrid variability

### In the bi-gaussian distribution, rt can be the variable



> If one assumes separate saturation threshold for thermals and environment:
 > no need for s, rt is sufficiant

# A new cloud scheme coupled to EDMF: determined using the CS



## A new cloud scheme coupled to EDMF: Parameterization of the standard deviation

#### Hypothesis:

- main source of variance in {thermals} & {environment} is the mixing =>  $\sigma$  depends on  $s_{th}$ - $s_{env}$  –  $\sigma$  also depends on the fraction of thermals :

the bigger the thermals, the larger  $\sigma_{env}$  due to detrainment of air from thermals; the smaller the thermals, the larger  $\sigma_{th}$  due to more impact of entrainment of air from environment

$$\sigma_{s,env} = c_{env} \times \left(\frac{\alpha}{1-\alpha}\right)^{\frac{1}{2}} \times \left(\overline{s}_{th} - \overline{s}_{env}\right) + b \times \overline{q}_{t_{env}}$$
$$\sigma_{s,th} = c_{th} \times \left(\frac{\alpha}{1-\alpha}\right)^{-\frac{1}{2}} \times \left(\overline{s}_{th} - \overline{s}_{env}\right) + b \times \overline{q}_{t_{th}}$$

with b=2.10-3, cenv=0.92, cth=0.09



Jam et al., 2011

# A new cloud scheme coupled to EDMF: **Parameterization of the standard deviation** $\sigma_{s,env} = c_{env} \times (\frac{\alpha}{1-\alpha})^{\frac{1}{2}} \times (\overline{s}_{th} - \overline{s}_{env}) + b \times \overline{q}_{t_{env}}$



A new cloud scheme coupled to EDMF: Test in 1D



# Conclusions

A new conditional sampling to select thermals from the surface to cloud top based on the emission of a passive tracer in LES:
 a new tool to evaluate and improve parameterizations of boundary layer thermals *Couvreux et al., blm, 2010*

 A continuous formulation of entrainment and detrainment from the surface to cloud top based on physical considerations *Rio et al., blm, 2010*

A new cloud statistical scheme linked to a thermal plume model, parameterization of the standard deviation in thermals and environment *Perraud et al, blm, 2011; Jam et al., blm, 2011* 

# A Diagnostic for evaluating the Representation of Turbulence in Atmospheric Models at the Kilometric Scale R. Honnert, V. Masson, F. Couvreux Honnert et al., 2011

> Use LES to determine similarity laws to describe the partitioning resolved / parameterized for moments

> For tke, <w'thl'>, <w'rt'>, <thl'2>, <rt'2>

> Hypothesis:

total moment=f(z/(zi+hc))partition= $f(\Delta x/(zi+hc))$ 

>Tested on 5 cases (3 dry CBL, 1 continental cu, 1 oceanic cu)

1/ determination of similarity laws
2/ diagnostic to evaluate the representation of turbulence in models



#### A Diagnostic for evaluating the Representation of Turbulence at the Kilometric Scale



#### A Diagnostic for evaluating the Representation of Turbulence at the Kilometric Scale



## Sensitivity tests to the definition of the conditional sampling



# Sensitivity tests to the definition of the conditional sampling



# **Application Contribution of thermals to fluxes and variances**

#### Flux and variance of $\theta l$



CS explains ~ 100% of the flux in the cloud layer, ~ 60-80% in the sub-cloud layer ~ 30-40% of the variance

## Mean profiles of liquid potential temperature and total water



# **Validation of the formulation in LES**



# Validation of the formulation in LES



# **Concerning the cloud scheme :**

Height (m)

Height (m)

Height (m)



> Bi-gaussian describes the subgrid variability

#### Perraud et al., 2011



#### Honnert et al., 2011

# Methods :

