Analysis of the vertical velocity budget in cloudy updrafts

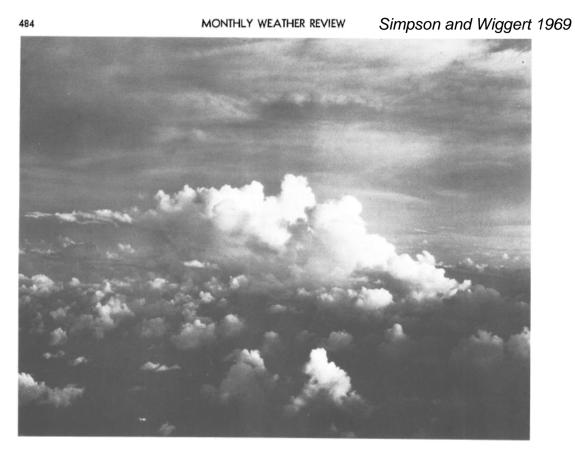


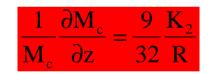
FIGURE 9.-Photograph of seeded cloud 1, July 28, 1965, at seeding time (2217:30 GMT). Right-hand portion seeded.

Stephan de Roode, Pier Siebesma, Harm Jonker and Yoerik de Voogd

The parameterized vertical velocity equation

$$\frac{dw}{dt} = w \frac{dw}{dz} = \frac{d}{dz} \left(\frac{w^2}{2} \right) = \frac{gB}{1+\gamma} - \frac{3}{8} \left(\frac{3}{4} K_2 + C_D \right) \frac{w^2}{R}$$

- γ virtual mass coefficient
- K₂ the entrainment coefficient
- C_d aerodynamic drag coefficient
- R cloud radius



The parameterized vertical velocity equation

$$\frac{dw}{dt} = w \frac{dw}{dz} = \frac{d}{dz} \left(\frac{w^2}{2} \right) = \frac{gB}{1+\gamma} - \frac{3}{8} \left(\frac{3}{4} K_2 + C_D \right) \frac{w^2}{R}$$

Parameter	Meaning	EMB 65	EMB 68	Remarks
K ₂	Entrainment	0.55	0.65	Lab. value 0.71
CD	Aerodynamic drag coefficient	0,506	0	Solid-sphere value=1.125
r	Virtual mass coefficient	0	0.5	Lab. value 0.5
LWC	Liquid water retained	½ condensate₋	Falloutscheme	Much improved in EMB 68

The parameterized vertical velocity equation

Vertical Velocity Equation	Constants	Source	Eq.
$\frac{1}{2}\frac{\partial w_s^2}{\partial z} = aB_s - 1.45\frac{w_s^2}{R}$	$a = \frac{2}{3}, R = ?$	Simpson and Wiggert (1969)	(1)
$\frac{1}{2}\frac{\partial w_s^2}{\partial z} = aB_s - (b\delta + \epsilon)w_s^2$	a=1/6,b=1/2	Gregory (2001)	(11)
$\frac{1}{2}\frac{\partial w_s^2}{\partial z} = aB_s - b\epsilon w_s^2$	a=1,b=2	Bretherton et al. (2004)	(17)
$\frac{1}{2}(1-2\mu)\frac{\partial w_s^2}{\partial z} = aB_s - b\epsilon w_s^2$	$a = 1, b = 1/2, \mu = 0.15$	Siebesma et al. (2007)	(15)

in the literature different values for *a* and *b* are proposed

Large difference in proposed values for constants

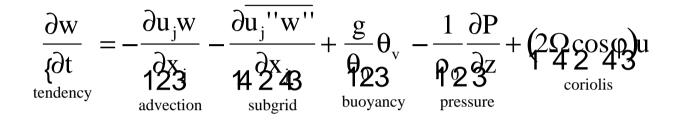
Vertical Velocity Equation	Constants	Source	Eq.	a'	b'
$\frac{1}{2}\frac{\partial w_s^2}{\partial z} = aB_s - 1.45\frac{w_s^2}{R}$	$a = \frac{2}{3}, R = ?$	Simpson and Wiggert (1969)	(1)	2/3	?
$\frac{1}{2}\frac{\partial w_s^2}{\partial z} = aB_s - (b\delta + \epsilon)w_s^2$	a=1/6, b=1/2	Gregory (2001)	(11)	1/3	3
$\frac{1}{2}\frac{\partial w_s^2}{\partial z} = aB_s - b\epsilon w_s^2$	a = 1, b = 2	Bretherton et al. (2004)	(17)	1	2
$\frac{1}{2}(1-2\mu)\frac{\partial w_s^2}{\partial z} = aB_s - b\epsilon w_s^2$	$a=1, b=1/2, \mu=0.15$	Siebesma et al. (2007)	(15)	10/7	5/7

The equations in the Table can all be expressed as: (Gregory: only if $\sigma(z) = cst$)

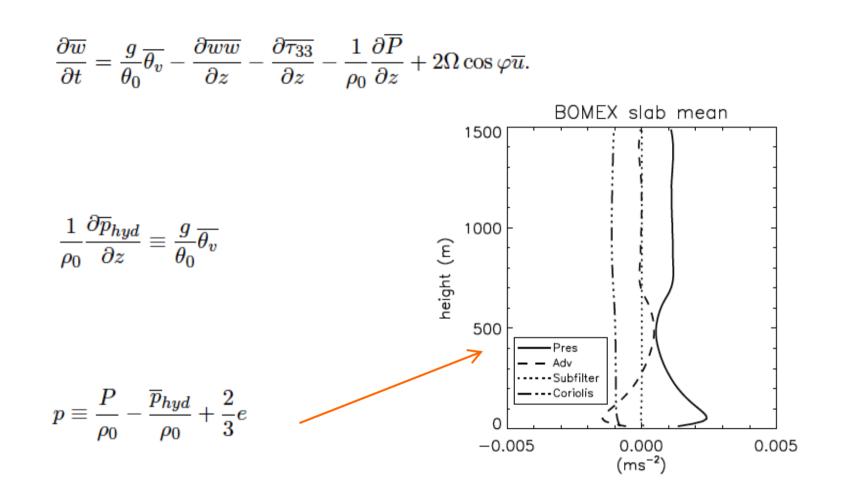
$$\frac{1}{2}\frac{\partial w_s^2}{\partial z} = a'B_s - b'\epsilon w_s^2.$$

Derivation of the conditionally sampled vertical velocity equation

Derivation of the conditionally sampled vertical velocity equation



Slab mean balance



Sampling operator

$$[\psi]_s(z) = \frac{\int_A I_s(x, y, z)\psi(x, y, z)dA}{\int_A I_s(x, y, z)dA}$$

$$\left[\frac{\partial w}{\partial t}\right]_{s} = -\left[\frac{\partial ww}{\partial z}\right]_{s} - \left[\frac{\partial u_{j}w}{\partial x_{j}}\right]_{s} - \left[\frac{\partial \tau_{33}}{\partial z}\right]_{s} - \left[\frac{\partial \tau_{3j}}{\partial x_{j}}\right]_{s} + [S_{w}]_{s}$$

Leibniz rule

$$\left[\frac{\partial w}{\partial t}\right]_{s} = \frac{\partial w_{s}}{\partial t} + \frac{w_{s}}{\sigma}\frac{\partial \sigma}{\partial t} + \left\{\frac{\partial w}{\partial t}\right\}_{L}$$
 Leibniz for tendency

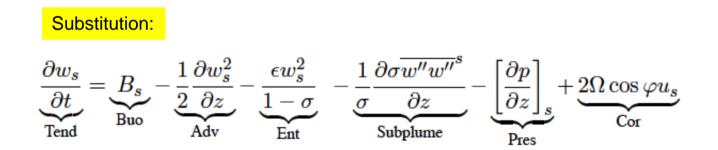
$$\frac{\partial \sigma w_s}{\partial t} = -\frac{\partial \sigma w_s w_s}{\partial z} - \frac{\partial \sigma \overline{w'' w''}^s}{\partial z} + E w_e - D w_s + \sigma \left[S_w\right]_s, \quad \begin{array}{l} \text{Siebesma and Cuijpers (1995)} \\ \text{but } \phi \text{ replaced by } w \end{array}$$

So what's in the lateral exchange term?

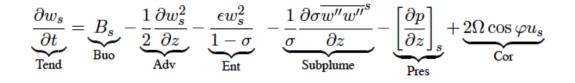
$$Ew_e - Dw_s = -\sigma \left[\frac{\partial u_j w}{\partial x_j}\right]_s - \sigma \left[\frac{\partial \tau_{3j}}{\partial x_j}\right]_s - \sigma \left\{\frac{\partial w}{\partial t}\right\}_L - \sigma \left\{\frac{\partial w w}{\partial z}\right\}_L - \sigma \left\{\frac{\partial \tau_{33}}{\partial z}\right\}_L$$

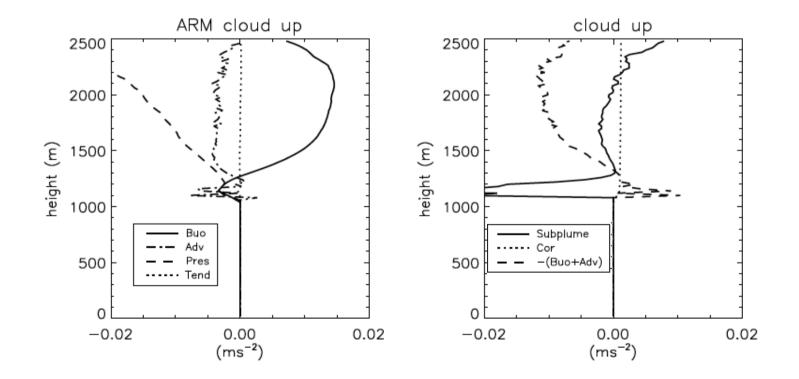
Massflux equation

$$\frac{\partial M_c}{\partial z} = -\frac{\partial \sigma}{\partial t} + E - D$$

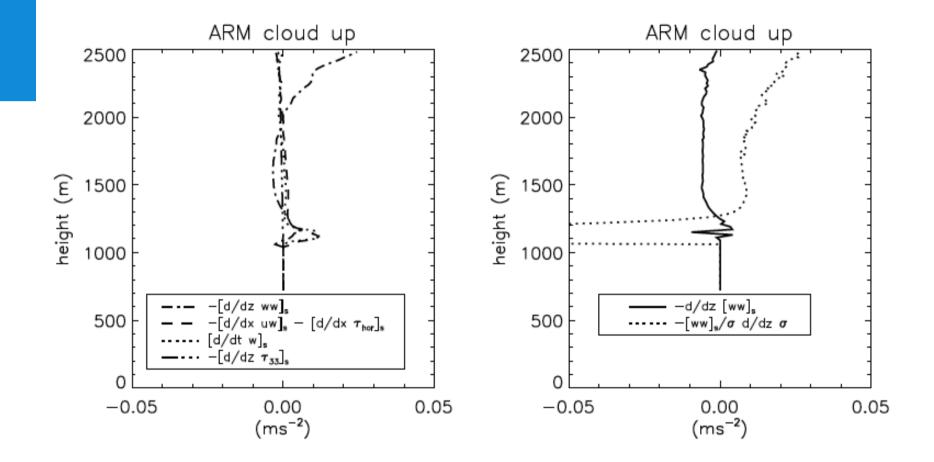


w budgets for ARM: term –(Buo+Adv) ~ -bεw_s² (but actually represents effect of pressure damping)

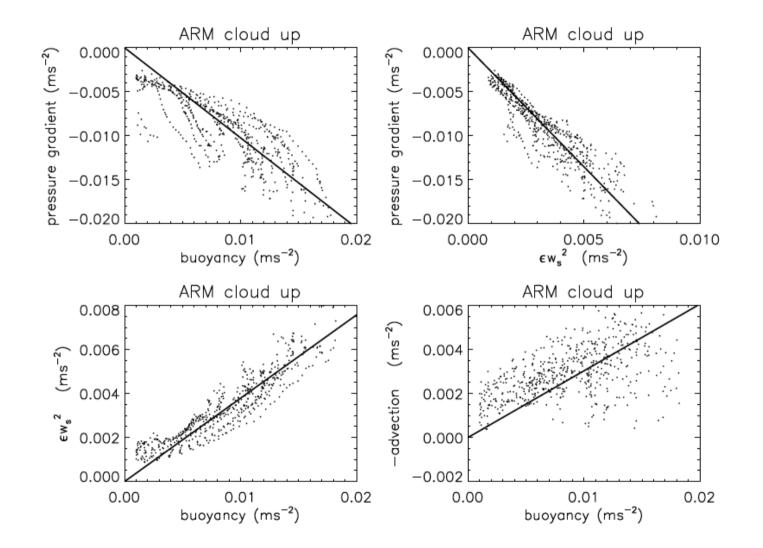




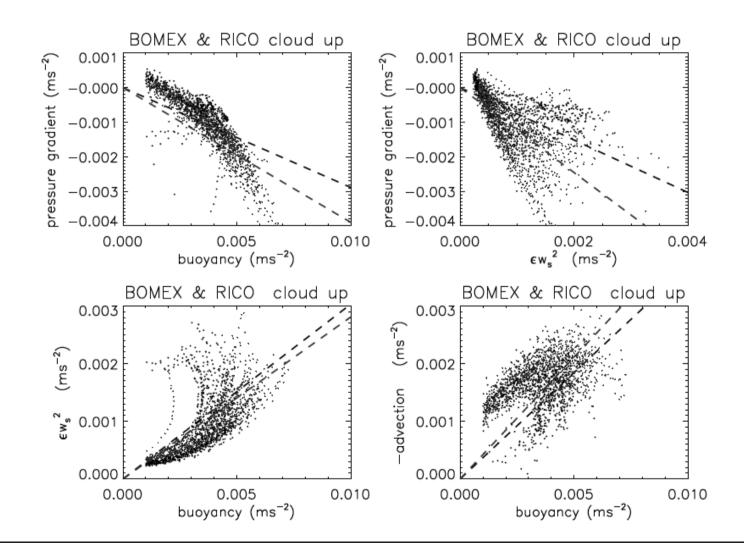
w budgets



scatter plots: ARM



scatter plots: BOMEX and RICO



Budgets do not exhibit universal scaling behavior

	Clo	oud core		Cloud updraft				
	BOMEX	ARM	RICO	BOMEX	ARM	RICO		
$-\left[\frac{\partial p}{\partial z}\right]_s = \alpha_p B_s$	-0.58	-1.06	-0.53	-0.39	-1.02	-0.29		
$-\left[\frac{\partial p}{\partial z}\right]_s = p_\epsilon \epsilon w_s^2$	-3.35	-5.17	-2.19	-1.23	-2.71	-0.76		
$\epsilon w_s^2 = \alpha_\epsilon B_s$	0.15	0.19	0.16	0.28	0.38	0.30		
$\frac{\partial w_s^2}{\partial z} = \eta B_s$	0.35	0.23	0.32	0.42	0.30	0.37		

Table 2: Fit coefficients α_p , p_{ϵ} , α_{ϵ} , and η of a linear regression trough origin for the scatter plots

Discussion

Vertical Velocity Equation	Constants	Source	Eq.	a'		b'
$\frac{1}{2}\frac{\partial w_s^2}{\partial z} = aB_s - 1.45\frac{w_s^2}{R}$	$a = \frac{2}{3}, R = ?$	Simpson and Wiggert (1969)	(1)	2/	3	?
$\frac{1}{2}\frac{\partial w_s^2}{\partial z} = aB_s - (b\delta + \epsilon)w_s^2$	a=1/6, b=1/2	Gregory (2001)	(11)	1/	3	3
$\frac{1}{2}\frac{\partial w_s^2}{\partial z} = aB_s - b\epsilon w_s^2$	a = 1, b = 2	Bretherton et al. (2004)	(17)	1		2
$\frac{1}{2}(1-2\mu)\frac{\partial w_s^2}{\partial z} = aB_s - b\epsilon w_s^2$	$a = 1, b = 1/2, \mu = 0.15$	Siebesma et al. (2007)	(15)	1()/7	5/7

$$\frac{1}{2}\frac{\partial w_s^2}{\partial z} = a'B_s - b'\epsilon w_s^2. \longrightarrow \qquad \frac{1}{2}\frac{\partial w_s^2}{\partial z} = (a' - b'\alpha_\epsilon)B_s \equiv \eta B_s$$

De Rooij and Siebesma propose $\alpha_{\epsilon}B_{s} = \epsilon w_{s}^{2}$

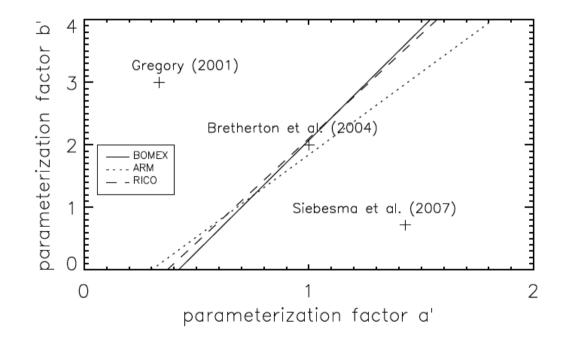
(diluted) CAPE: $\eta/2 \sim 0.15-0.2$

	Clo	oud core		Cloud updraft				
	BOMEX ARM RICO			BOMEX	ARM	RICO		
$-\left[\frac{\partial p}{\partial z}\right]_s = \alpha_p B_s$	-0.58	-1.06	-0.53	-0.39	-1.02	-0.29		
$-\left[\frac{\partial p}{\partial z}\right]_s = p_\epsilon \epsilon w_s^2$	-3.35	-5.17	-2.19	-1.23	-2.71	-0.76		
$\epsilon w_s^2 = \alpha_\epsilon B_s$	0.15	0.19	0.16	0.28	0.38	0.30		
$\frac{\partial w_s^2}{\partial z} = \eta B_s$	0.35	0.23	0.32	0.42	0.30	0.37		

$$\frac{1}{2}\frac{\partial w_s^2}{\partial z} = \frac{\eta}{2}B_s << B_s$$

Consequence: b' and a' are dependent

$$\frac{1}{2}\frac{\partial w_s^2}{\partial z} = (a' - b'\alpha_\epsilon)B_s \equiv \eta B_s \longrightarrow b' = \frac{a' - \eta}{\alpha_\epsilon}$$



Conclusions

- 1. No universal scaling behavior is found
- 2. Pressure term dominant destruction term
- 3. Only small fraction of (diluted) CAPE used for producing vertical motions
- 4. a' and b' are dependent factors
- 5. more budgets shown in De Roode et al. (2011)

