Entrainment and detrainment in EDMF

Wim de Rooy, Pier Siebesma, Geert Lenderink, Roel Neggers

Outline

Entrainment/detrainment in EDMF

New: The dry convection part (implementation in Harmonie/Arome)

> Not new: The moist part Traditional <-> Unconventional

Conclusions/recommendations

Where dry?

Dual mass flux framework (used in Harmonie) *Roel Neggers et al. 2009*

Entrainment formulation for dry convective BL *Siebesma et al. 2007* **Dry**

Sampling based on percentile high w

 $\bigg)$

 \int

 z_i-z

1

$$
\varepsilon = -\frac{\partial \theta_{lu}}{\partial z} / (\theta_{lu} - \overline{\theta}_l)
$$

 $\varepsilon = c_e^{\varepsilon}$

 \setminus

+ *z*

 $\bigg($

1

Entrainment formulation for sub-cloud layer

z

 Z_{i}

 z_t

Difference with dry convective BL:

- •Vertical velocity $\neq 0$ for $z=z_i$
- Stronger, bigger thermals (that can become cloud) •
	- \Rightarrow Building on the work of *Siebesma et al. 2007*

Dry

Where is δ **in the dry part?**

Nowhere

Some simplifications:

In dry convection mass flux is determined by w_u (constant a)

In sub-cloud linked to mass flux closure at cloud base

Entrainment and detrainment in the cloud layer

ε and δ have a different role

Continuity eq.:
$$
\frac{\partial M}{\partial z} = (\varepsilon - \delta)M
$$

Entraining plume model: $\frac{\partial \phi_u}{\partial z} = \varepsilon(\phi_u - \overline{\phi}) \quad \phi \in \{q_t, \theta_l\}$

So:ε and δ determine the mass flux profile and ε determines the dilution

In the cloud layer

• Almost all convection (and EDMF) schemes prescribe some kind of function for $ε$ and $δ$

Example of such a "traditional" scheme (Kain Fritsch)

Kain Fritsch

• Several (tunable) parameters have to be chosen but in principle:

$$
\mathcal{E}_{KF} = \mathcal{E}_0 \cdot \chi_c^2
$$

$$
\delta_{KF} = \mathcal{E}_0 \cdot (1 - \chi_c^2)
$$

How well do they perform? (validated against LES diagnosis)

Kain Fritsch entrainment (dilution)

BOMEX case: Kain Fritsch ε with optimal ε_{o}

Kain Fritsch ^ε not very suitable for describing the dilution

But there is something else how about the mass flux profile?

 $\epsilon_{\sf K F}$ and $\delta_{\sf K F}$ vary in a similar but opposite way to $\chi_{\rm c}$ ² and therefore have a similar influence on mass flux profile variations

However

• Variations in the mass flux profile are strongly dominated by δ!

•Empirical arguments

•Theoretical arguments

Empirical arguments

Much larger variation in δ from case to case, hour to hour, different cloud sizes

Empirical arguments

De Rooy & Siebesma, 2008

Theoretical arguments

De Rooy & Siebesma, QJRMS 2010

Starting from general in-cloud field budget equation for q_t (Siebesma, 1998)

$$
\varepsilon = \frac{\eta L_b}{A_c} + H(-u_b) \frac{1}{M} \frac{\partial M}{\partial z} \equiv \varepsilon_{turb} + \varepsilon_{\text{dyn}}.
$$

Shallow Convection: Usually dM/dz<0

 $b \rightarrow M$ Ω dyn *cb z M M* $\frac{H^{-b}}{A} - H(u)$ L_{b} $- H(u_{b}) \stackrel{1}{\longrightarrow} \frac{\partial M}{\partial u} = \delta_{b} + \delta_{b}$ η $\delta = \frac{P_b}{A} - H(u_b) \frac{1}{M} \frac{\partial H}{\partial z} = \delta_{turb} +$ **a** = $(u_{h})\frac{1}{\cdot}$

Some advantages:

•Mass flux parameterizations can be related to observations and LES \bullet Function of ϵ can be dedicate to a good description of the dilution

Short D-tour: How can we proceed with the expressions:

$$
\varepsilon = \frac{\eta L_b}{A_c} + H(-u_b) \frac{1}{M} \frac{\partial M}{\partial z} \equiv \varepsilon_{turb} + \varepsilon_{dyn} \qquad \delta = \frac{\eta L_b}{A_c} - H(u_b) \frac{1}{M} \frac{\partial M}{\partial z} = \delta_{turb} + \delta_{dyn}
$$

Use continuity eq. to eliminate u_b Use vertical velocity eq. to eliminate η

Expressions independent of divergence/convergence

$$
\varepsilon_{\exp} = \frac{\alpha B}{w_c^2} - \frac{1}{w_c} \frac{\partial w_c}{\partial z}
$$

$$
\delta_{\exp} = \frac{\alpha B}{w_c^2} - \frac{2}{w_c} \frac{\partial w_c}{\partial z} - \frac{1}{w_c} \frac{\partial a_c}{\partial z}
$$

How do the analytical expressions perform against LES?

Example for
$$
\varepsilon_{\exp} = \frac{\alpha B}{w_c^2} - \frac{1}{w_c} \frac{\partial w_c}{\partial z}
$$

Analytical expression cannot be directly applied as parameterization

However, iteration procedure Alison Stirling & R. Wong (to be submitted to QJRMS) Expressions perform well for a wide variety of conv. cases

Conclusions/Recommendations

- Keep parameterizations as simple as possible. Just enough complexity to include the most relevant processes
- \bullet Proposed ε, δ are strongly coupled to LES (i.o. tuned)
- Treat dilution (ε) and mass-flux profile separately
	- $\mathcal{L}_{\mathcal{A}}$, where $\mathcal{L}_{\mathcal{A}}$ is the set of the Empirical/physical bases
	- $\mathcal{L}_{\mathcal{A}}$, where $\mathcal{L}_{\mathcal{A}}$ is the set of the Flexibility
	- Robustness
- Analytical expressions give insight. Also: promising as parameterization of dilution

Thank you
Questions?