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Improving physical parameterizations 
for global circulation models 
Main motivation - Improvement of simulation of stratocumulus, shallow cumulus and 

transition in global climate models 
Strategy -developing physical parameterizations in single column model (SCM), 

evaluation with Large Eddy Simulation (LES) results 
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Stratocumulus to shallow cumulus 
transition off coast California 

Transition  mechanisms: 
•  Cloud top entrainment instability (Randall, 1980) 
•  Surface forced decoupling (Bretherton and Wyant, 1997) 
•  Microphysical processes (e.g. Jiang et al. 2002) 
   

Physical processes influencing the formation and break up of the low level clouds: 
-  Large scale dynamics (Hadley-Ferrel circulation) 
-  Cloud physics 
-  Turbulence (boundary layer and convection) 
-  Radiation 

Trajectory of boundary layer air 



Single column model 

Prognostic equations for large scale flow: 
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Subsidence 
(large scale flow) Turbulent fluxes 

(boundary layer + convection) 

Horizontal advection 

Radiation flux 

Geostrophic  
wind components 

Simulation of non-precipitating moist convection 

θL = θ − Lv

cp
ql



Condensation and radiation parameterizations 
Cloud physics – pdf scheme (e.g. Cheinet and Teixeira, 2003)  

Radiation Scheme – long-wave for cloudy layers 
only 

•  maximum cloud overlap 
•  emissivity based on liquid water content 

   

Key for coupling between condensation  
and turbulence: 

•  Buoyancy flux 
•  Radiation (long-wave only) 

2D pdf of ΘL  [K] and qT [kg/kg] at cloud  
base for shallow cumulus (RICO) case – from LES 

Saturation line 

Cloudy part 
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EDMF: turbulent parameterization and beyond 
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Constants 

Local mixing ‘eddy-diffusivity’ (ε-l scheme): 

Mass-flux parameterization – bulk thermals (only for 
θL and qt): 

w ′ϕ′|ed = −K
∂ϕ

∂z

K = Cl
√

e

l = l(kz , τ
√

e,
√

e/N)

Turbulent kinetic 
energy 

Turbulent length scale 

∂ϕj

∂z
= εj(ϕe − ϕj) ϕ = θL, qt

1

2

∂w2
j

∂z
= ag

(
θvj

θve
− 1

)
− (b + cεj)w

2
j

thermals 

w ′ϕ′ = w ′ϕ′|ed +
∑

j

aj(wj − we)(ϕj − ϕe)

environment 

Entrainment coefficient 

thermals 

environment 

Current scheme:  
- Parameterization of turbulent fluxes (EDMF) 

Future plans – estimation of joint pdf(ΘL,qt,w): 
-  Condensation and moist physics  
-  Transport of e.g. pollutants (transport α wa)        



1. pdf based mass/flux parameterization 
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Updraft scheme: 
-  Start with a single dry updraft at surface, integration in vertical 
-  Estimation of cloud cover and liquid water at each vertical level (pdf cloud scheme of Cheinet 
and Teixeira 2003) 
-  Separation of dry and dry updraft if condensation occurs, each of the updrafts is integrated 
independently 
-  Entrainment rate ε=1/τw 

Estimation of covariance within updraft: 

Condensation scheme – moist/dry updraft area  
(Cheinet & Teixeira, 2003): 
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Mean profiles between 3rd and 4th simulation hour 

Results – Shallow cumulus case 
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BOMEX case, comparison with LES results from Siebesma et al. (2003) 

Cloud cover 
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Mean profiles between 3rd and 4th simulation hour 

Results – Shallow cumulus case, cont. 
(moist thermals) 

Flux of qt  

ql 
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Cloud cover 

Single column model, dry 
Single column model, moist 
LES, cloud core, mean 
LES, cloud core, range 
LES, clouds, mean 
LES, clouds, range 
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BOMEX case, comparison with LES results from Siebesma et al. (2003) 



Mean profiles between 3rd and 4th simulation hour 

Results – ARM case 
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Cloud cover 
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ARM case, comparison with LES simulations 
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2. Stochastic mass flux parameterization 

Observations 
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Cumulus clouds with different cloud-top 

Dry updrafts – cumulus ‘roots’ Sm
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Continuous and constant 
entrainment rate 
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Stochastic discrete 
entrainment rate – drawn 
from Poison distribution 

Less entrainment events per height 
- higher height 

More entrainment events 
per height - lower height 

Problems with pdf based scheme: 
-  Number of updrafts not well controlled 
-  Updrafts do not reach level of neutral buoyancy 
-  High sensitivity on entrainment rate (1/τw) 



Mass flux parameterization, a few details 

Entrainment rate 

Below condensation level: 
- Fixed entrainment rate  

Above condensation level: 
-  Stochastic, discrete event* 
-  Each entrainment event entrains fixed amount of mass 

(20% of its mass) 
-  For updraft traversing distance dz , probability of 

entrainment event equals to dz/L0  (on average 10 
updraft events between the updraft condensation and 
level of neutral buoyancy, finite Δz -> Poisson distribution 
of entrainment) 

(*Inspired by Romps and Kuang, 2010) 
Updraft area at surface 

•  Constant (4% of the area) 
Estimation of cloud base joint pdf(ΘL,qt,w) within updraft: 
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Local balance between production 
and dissipation of second moments 
for conserved variables 

Prescribed correlation coefficients 



Mean profiles between 3rd and 4th simulation hour 

Results – Shallow cumulus case 
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BOMEX case, comparison with LES results from Siebesma et al. (2003) 
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Mean profiles between 3rd and 4th simulation hour 

Results – Shallow cumulus case, cont. 
(moist thermals) 

Flux of qt  
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Cloud cover 

Single column model, dry 
Single column model, moist 
LES, cloud core, mean 
LES, cloud core, range 
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BOMEX case, comparison with LES results from Siebesma et al. (2003) 



Mean profiles between 3rd and 4th simulation hour 

Results – Shallow cumulus case, cont. 
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Cloud cover 

 

 

99.9 99.7 99.3 98.1 94.8 86.1 62.7 0

−0.2 −0.1 0 0.1 0.2 0.3
0

500

1000

1500

2000

Skewness

Z
[m

]

 

 
!L
qt
w

θL − θL [K]

q t
−

q t
[g

kg
−

1 ]

−1.5 −1 −0.5 0 0.5 1
−2

−1

0

1

2

3

4
x 10−3

580 m 

Look into the joint pdfs of conserved variables and skewness,  
comparison between LES and updrafts  
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simulation) 
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Full line – LES 
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Estimation of skewness from LES: 
-  Only mass-flux contribute to skewness (eddy-diffusivity 

contribute to symmetric variability around mean) 
-  Second moment estimated from LES  



Mean profiles between 3rd and 4th simulation hour 

Results – Stratocumulus case 
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Simulation of DYCOMS-II case,  
comparison with LES results from Stevens et al. (2005) 
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Mean profiles between 3rd and 4th simulation hour 

Results – Sc and Cu simulation 
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Simulation of ASTEX (stratocumulus) campaign results: 
- 4 simulations – 1 original, 4 with increased SSTs 
- Comparison of stationary results from SCM with LES (Chung & Teixiera, 2011)  
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•  Combination of eddy-diffusivity and mass-flux is a promising 

parameterization approach for convective boundary layers 
•  We have successfully simulated the following cases: 

Stratocumulus, Cumulus, Transition from Sc to Cu, Dry 
convection  

 
•  Implementation and testing in full 3d model (NASA GEOS5) 
•  Proper coupling to other parameterizations 
•  Extension to precipitating convection 

 

Conclusions and further plans 
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