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/Main motivation - Improvement of simulation of stratocumulus, shallow cumulus and
transition in global climate models
Strategy -developing physical parameterizations in single column model (SCM),
evaluation with Large Eddy Simulation (LES) results
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Physical processes influencing the formation and break up of the low level clouds:
- Large scale dynamics (Hadley-Ferrel circulation)
- Cloud physics
- Turbulence (boundary layer and convection) 2
- Radiation
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( Simulation of non-precipitating moist convection

Prognostic equations for large scale flow:
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- pdf scheme (e.g. Cheinet and Teixeira, 2003)
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2D pdf of O, [K] and gt [kg/kg] at cloud
base for shallow cumulus (RICO) case - from LES

- long-wave for cloudy layers

only and turbulence:
« maximum cloud overlap » Buoyancy flux

- emissivity based on liquid water content + Radiation (long-wave only)
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thermals Current scheme:

- Parameterization of turbulent fluxes (EDMF)
Future plans - estimation of joint pdf(O©,,q,w):
- Condensation and moist physics
environment

- Transport of e.g. pollutants (transport o we)
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QWL = ey, ——> PP = 5 (P 9) s pu =0
@ = —07\/69] - qia;
Updraft scheme: '
- Start with a single dry updraft at surface, integration in vertical
- Estimation of cloud cover and liquid water at each vertical level (pdf cloud scheme of Chein

and Teixeira 2003)
- Separation of dry and dry updraft if condensation occurs, each of the updrafts is integrated

independently 6
- Entrainment rate e=1/tw
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Updraft fraction
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ARM case, comparison with LES simulations
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/Problems with pdf based scheme:
- Number of updrafts not well controlled
- Updrafts do not reach level of neutral buoyancy
- High sensitivity on entrainment rate (1/7tw)

Cumulus clouds with different cloud-top

$~.. Stochastic
entrainme
from Poiso

Well defined cloud base

Q
(8]
5 .
o= — Con‘rur_mous
oo entrainme
93
N
Qs
o=
O >
Za
=)
€&
n o

Dry updrafts - cumulus ‘roots



NN

T

Below condensation level: Above condensation level:
- Fixed entrainment rate - Stochastic, discrete event™

- Each entrainment event entrains fixed amount of mass
(20% of its mass)

- For updraft fraversing distance dz , probability of
entrainment event equals to dz/L, (on average 10
updraft events between the updraft condensation and
level of neutral buoyancy, finite Az -> Poisson distribution
of entrainment)

(*Inspired by Romps and Kuang, 2010)
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Look into the joint pdfs of conserved variables and skewness,
comparison between LES and updrafts

Updrafts from SCM
& (collection over 1h of
. simulation)
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Estimation of skewness from LES:

- Only mass-flux contribute to skewness (eddy-diffusivity
contribute to symmetric variability around mean)

- Second moment estimated from LES
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/Simula‘rion of DYCOMS-II case,
comparison with LES results from Stevens et al. (2005)
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/Simula‘rion of ASTEX (stratocumulus) campaign results:
-4 simulations - 1 original, 4 with increased SSTs
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Combination of eddy-diffusivity and mass-flux is a promising
parameterization approach for convective boundary layers
We have successfully simulated the following cases:
Stratocumulus, Cumulus, Transition from Sc to Cu, Dry
convection

Implementation and testing in full 3d model (NASA GEOSDH)
Proper coupling to other parameterizations
Extension to precipitating convection
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