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Science Topics:

EDMF and dry convective boundary layer - Marcin Witek, Joao Teixeira

EDMF and moist shallow convection – Kay Suselj, Joao Teixeira

EDMF and PDF-clouds in a simplified GCM to study climate change -

Zhihong Tan, Remi Lam, Tapio Schneider, Joao Teixeira

LES research – Georgios Matheou, Daniel Chung

Summary of EDMF (and some PDF cloud parameterization) 
research at JPL and Caltech
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Projects and funding:

JPL LES model development and evaluation (JPL internal) – 2008-2011

EDMF development and implementation in US Navy mesoscale model 
COAMPS (ONR) – 2008-2011

EDMF and PDF-clouds development and implementation in NASA GMAO 
model (NASA) – 2009-2012

EDMF development and  implementation in NCEP model (NOAA CPT) –
2010-2013

EDMF and PDF-clouds development and implementation in US Navy global 
model NOGAPS (ONR) – 2011-2014

Summary of EDMF (and some PDF cloud 
parameterization) research at JPL and Caltech
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Dry Convective Boundary Layers:
example of US Navy mesoscale model COAMPS 
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Example – CICLUS experiment

COAMPS control:

• not enough entrainment

(too low and too cold 

boundary layer)

• profiles not well mixed 
4Teixeira et al., 2004
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Full EDMF simulations: 
• surface layer more realistic
• neutral profile in the well-mixed layer
• larger entrainment leads to better inversion height
• inversion layer too sharp compared to LES

LES
1-D ED
1-D EDMF

Dry Convective Boundary Layer: θ and qt vertical 
profiles after 6 hours with EDMF and TKE

Witek et al., 2011

Witek et al, JAS, 2011
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Partial updraft condensation:
- Start with single dry updraft at surface, integration in vertical
- Using updraft PDF to estimate updraft cover and water at each level 
- Separation of dry and moist updraft when partial condensation occurs
- Moist and dry updraft-areas are integrated independently in vertical

(with different vertical velocities)

EDMF and Shallow convection:
using PDF of updraft properties

Provides estimation of updraft area and avoids need for cloud base closure

Variance of updraft PDF:

Local balance between 

production and destruction 
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Mean profiles between 3rd and 4th simulation hour

EDMF simulation of shallow cumulus BOMEX 
case: comparison with LES

Single column model
LES, mean

Updraft fraction

Updraft w

Single column model, dry
Single column model, moist
LES, cloud core, mean
LES, cloud core, range
LES, clouds, mean
LES, clouds, range

Suselj et al, JAS,  2011

New aspect: Using PDF of updraft properties
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EDMF using PDF of updraft properties: BOMEX 
and the sensitivity to vertical resolution

• 20 m (solid)
• 30 m (dashed)
• 40 m (dotted)
• 60 m (dash-dotted)

Number of updrafts for control 
simulation (DZ=20 m)
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EDMF using PDF of updraft properties: BOMEX 
and the vertical fluxes

• LES (black)
• ED (red)
• MF (green)
• EDMF (blue)
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EDMF using PDF of updraft properties: BOMEX 
and moist conserved variables PDFs

• LES (colored isolines)
• LES environmental profile (solid black line)
• updraft values (red squares represent dry, black 
squares moist updrafts)
• SCM environmental profile (black dashed line)
• saturation line (blue line).
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A simple LES framework to study Sc, Cu and the transition

• ASTEX initial conditions (Duynkerke et al. 1999)
• SST Monin—Obhukov surface boundary conditions
• Statistically steady (12 days)
• Imposed Large-scale advection and subsidence
• 2 K/day uniform clear-sky longwave cooling
• Cloud longwave cooling (Duynkerke et al. 1999)
• 3.2 km x 3.2 km x 3 km domain
• 20 m x 50 m x 50 m resolution
• 10 cases: 5 SSTs, 2 Divs
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Mean thermodynamic profiles
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Large-domain LES: RICO

• Domain size 80 × 80 × 4 km
• Resolution is 20 m, uniform
• 4096 × 4096 × 200 = 3.3 billion cells

14

t = 10 h t = 15 h Matheou et al, 2011
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Direct Numerical Simulation (DNS) of 
stratified homogeneous turbulence
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Chung et al, 2011
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Motivation for implementing EDMF in 
simple GCMs

OBSERVATIONS 
(SATELLITE 
DATA/FIELD 

EXPERIMENTS)

OBSERVATIONS 
(SATELLITE 
DATA/FIELD 

EXPERIMENTS)

LARGE EDDY 
SIMULATIONS

LARGE EDDY 
SIMULATIONS

SINGLE COLUMN MODELS / 
PARAMETRIZATION SCHEMES

SINGLE COLUMN MODELS / 
PARAMETRIZATION SCHEMES

IDEALIZED GCMS 
WITH REALISTIC 

PARAMETERIZATIONS 

IDEALIZED GCMS 
WITH REALISTIC 

PARAMETERIZATIONS 
FULLY COUPLED GCMFULLY COUPLED GCM
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• GFDL idealized GCM with a slab-ocean
• No diurnal or seasonal cycle
• No large-scale condensation
• No deep convection
• EDMF for sub-grid vertical mixing (dry, shallow and deep 

convection)
• Gaussian PDF-based cloud parameterization
• Vary the longwave optical depth (LWOD) to represent climate 

change with changing GHG

Simple GCM Description
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Cloud changes for increased GHGs in simple GCM

increased GHGs

• Subtropical low clouds decrease with with warming climate – increased GHGs

• Lower tropospheric stability does not appear related to this change

• Decrease of low cloud fraction is related to decrease of s = qt - qs
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Summary 

1) A variety of projects related to EDMF development at JPL/Caltech

2) EDMF and TKE have been combined to represent dry and cumulus boundary 
layers

3) Using PDF of updraft properties leads to new EDMF shallow convection 
approaches: deterministic and stochastic sampling of cloud base PDF

4) LES steady-state simulations of Sc, Cu and transition help EDMF evaluation

5) EDMF and PDF-clouds have been implemented in idealized GCM to perform 
climate change investigations
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Eddy-Diffusivity/Mass-Flux Model 

( )' ' ' ' 1 ' ' (1 )( )( )u u u u u e u eu ew a w a w a a w wϕ ϕ ϕ ϕ ϕ= + − + − − −

Dividing a grid square in two regions (updraft and environment) and 
using Reynolds decomposition and averaging leads to

' ' ' ' ( )u u uew w a wϕ ϕ ϕ ϕ= + −

' ' ( )uw k M
z
ϕϕ ϕ ϕ∂= − + −

∂

where au is the updraft area. Assuming au<<1 and we~0 leads to

ED closure: assuming ED for 1st

term and neglecting 2nd term

MF closure: neglecting 1st term 
and assuming M=auwu

EDMF:

Siebesma & Teixeira, 2000

Bimodal joint pdf of w and qt

ED mixing 
MF mixing

EDMF is able to reproduce variety of boundary layer convection types
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Cloud and Convection Parameterization:
Moist conserved variables

( )' '
p
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θ θθ∂ ∂= − +

∂ ∂ ( )' 'q w q C
t z
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t z
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∂ ∂

( )' 'l
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∂ ∂= −
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C T

θ θ
 

= −  
 

tq q l= +

Two major advantages of using conserved variables:

1) The cloud/condensation term disappears from the equations

2) The ED approach is able to represent the correct cloud fluxes

Traditional set of thermodynamic variables

θ - potential temperature, q - specific humidity, l - liquid water

Moist conserved variables

Liquid water potential temperature

Total water content

For convenience: 
the mean of a 
variable       is often 
represented as

ϕ
ϕ
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PDF-based Cloud Parameterization

tq q l= +

1 1
2 2 2

Qa erf  = +  
 

2 / 21
2

Ql aQ e
σ π

−= +

( )
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t t
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a p q dq
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( ) ( )
s

t s t t
q

l q q p q dq
+∞

= −

PDF cloud parameterizations are based on the pdf of qt (in this 
simple example) or on the joint pdf of qt and θl

il
it
y

Values larger than 
saturation are cloudy

Total water: qt = q + l

Gaussian PDF leads to cloud fraction and liquid water as a function of Q:

t sq qQ
σ
−=

a = cloud fraction

Mellor, 77; Sommeria & Deardorff, 77
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Pdf-based cloud parameterizations

How to determine the variance of total water?
1) Prognostic equation:

2) Diagnostic equation:

( ) ( ) ' '' ' 2 ' ' ' ' 't t t
t t t t t

q

q q qq q w q w q q
t z z τ

∂∂ ∂= − − −
∂ ∂ ∂

' ' 2 ' ' t
t t q t

qq q w q
z

τ ∂= −
∂

Eddy-diffusivity
2

' ' 2 t
t t q

qq q k
z

τ ∂ =  ∂ 

Mass-flux

( )' ' 2 u t
t t q t t

qq q M q q
z

τ ∂= − −
∂
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Gaussian PDF scheme for PBL clouds implemented in GEOS-5:
ED-based variance and interactive radiation

1000 950 900 850 800

1000 950 900 850 800

Two year simulation
%
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