EDMF developments in the operational global model ARPEGE

Y. Bouteloup CNRM/GAME Météo-France and CNRS

EDMF meeting, Delft, June 14-15 2011

NWP in the CNRM/GAME

\triangleright Current operational situation (KFB)

 Evolution strategy (EDKF, convergence with AROME) ^o Presentation of the scheme ^o Stability problem in ARPEGE ^o Other problems

Conclusion and prospects

ARPEGE/ALADIN/AROME/IFS/HARMONIE A unified sofware

GLOBAL (variable mesh or not) or LAM (choice made by NAMELIST)

ARPEGE/ALADIN-MF operational configurations

 \triangleright ARPEGE is a global spectral model with a variable mesh

 T798 C=2.4 (Δ**t =** 600s **)** 10 km over France and around 60 km at the antipode, few hundred kilometers east New-Zealand

 \triangleright 70 vertical levels \rightarrow Close to ECMWF vertical resolution in the troposphere

 4DVAR multi-incremental data assimilation, with two outer loops T107 C=1 (Δ**t =** 1800s **)** and T323 C=1 (Δ**t =** 1350s **)** using a 6 hours window

 ALADIN-MF is an hydrostatic LAM with the same physics it runs over France, Indien Ocean, West Indies, French Polynesia, New-Caledonia and some secret parts of the world (army queries !)

3DVAR data assimilation

Presently 8km, 70 levels, Δ**t =** 480s

AROME operational configuration

- AROME is a non-hydrostatic LAM
- \triangleright Physical parametrizations come from Méso-Nh
- >It runs over France (coupling model is ARPEGE)
- 3DVAR data assimilation
- \triangleright Presently 2.5km, 60 levels (more levels than ARPEGE in the PBL)
- Δ**t =** 60s

Operationnal «NWP» Boundary layer physics at Météo-France

All NWP models (AROME, ARPEGE and ALADIN-MF) use « EDMF » concept

$$
\overline{w' \phi'} = -K \frac{\partial \phi}{\partial z} + \frac{M_u}{\rho} \left(\phi_u - \overline{\phi} \right) \quad \text{with} \quad K = c L_{BLS9} \sqrt{TKE}
$$

3

and
$$
L_{BLS9} = \left[\frac{(l_{up})^{\frac{2}{3}} + (l_{down})^{\frac{2}{3}}}{2} \right]^{\frac{2}{2}}
$$

Where I_{up} and I_{down} are computed using dry buoyancy following Bougeault and lacarr ère (1989)

ARPEGE and ALADIN-MF | Equations | AROME

 \triangleright Prognostic turbulent kinetic energy scheme « CBR » (Cuxart et al 2000)

 \triangleright Shallow convection mass flux scheme « KFB » (Bechtold et al 2001)

Equations should be the same

$$
\longleftrightarrow
$$

 \triangleright Prognostic turbulent kinetic energy scheme « CBR » (Cuxart et al 2000)

 \triangleright Shallow convection and dry thermal mass flux scheme « EDKF » (Pergaud et al 2009)

Connection between TKE and Shallow convection

 With KFB, during our first evaluation tests in ARPEGE, we found too much low level clouds and too much wind in the PBL in the tropical area

 \triangleright A thermal production term is then computed by KFB and Bougeault Lacarr ère (1989) mixing lengths are increased in the shallow clouds

It was found a large beneficial impact on wind in the tropics (20S 20N)

Toujours un temps d'avance

The reasons of a test of EDKF in ARPEGE

- \triangleright No dry thermal in KFB
- \triangleright No mixing of wind in KFB
- Convergence strategy between NWP models physics
- \triangleright Global model is a great testbed for parametrizations
- \triangleright But, global models are very sensitive clockworks
- \triangleright KFB is numerically stable at large time step \rightarrow T107 Δt = **1800s**

EDKF scheme equations

Mass flux equation
$$
\Rightarrow
$$
 $\frac{1}{M_u} \frac{\partial M_u}{\partial z} = (\varepsilon - \delta)$
\n $\frac{1}{M_u} \frac{\partial M_u}{\partial z} = (\varepsilon - \delta)$
\n $\frac{1}{M_u} \frac{\partial M_u}{\partial z} = (\varepsilon - \delta)$
\n $\frac{1}{M_u} \frac{\partial M_u}{\partial z} = (\varepsilon - \delta)$
\n $\frac{1}{M_u} \frac{\partial M_u}{\partial z} = (\varepsilon - \delta)$
\n $\frac{1}{M_u} \frac{\partial M_u}{\partial z} = (\varepsilon - \delta)$
\n $\frac{1}{M_u} \frac{\partial M_u}{\partial z} = (\varepsilon - \delta)$
\n $\frac{1}{M_u} \frac{\partial M_u}{\partial z} = (\varepsilon - \delta)$
\n $\frac{1}{M_u} \frac{\partial M_u}{\partial z} = \varepsilon - \varepsilon$
\n $\frac{1}{M_u} \frac{\partial M_u}{\partial z} = \varepsilon$
\n $\frac{1}{M_u} \frac{\partial M_u}{\partial z} =$

Closure

$$
\blacktriangleright \qquad M_u(z_{grd}) = C_{M_0\rho} \left(\frac{g}{\theta_{vref}} \overline{w' \theta_{vs}}' L_{up} \right)^{1/3} \qquad (C_{M_0\rho} = 0.065)
$$

METEO FRANCE
Toujours un temps d'avance

O

In the cloud Kain and Fritsch (1990) approach

 \triangleright It is supposed that the cloud is surrounded by a transition (mixing) region

 \triangleright Subparcel mass mixture in the transition region is estimated by a probability density function $f(x)$ where x is the fraction of environmental air in mixed subparcel (1-x is the fraction of updraft air)

 \triangleright Entrainment and detrainment rate are then given by :

$$
\varepsilon_{cloud} = \delta M_t \int_0^{x_c} x f(x) dx \qquad \text{and} \qquad \delta_{cloud} = \delta M_t \int_{x_c}^1 (1-x) f(x) dx
$$

Where x_c is the neutrally buoyant mixture and $\delta \mathsf{M}_\mathsf{t}$ the total rate at which mass enters in the transition region

$$
\delta M_t = M(-0.03\delta P/R)
$$
 R is the updraff radius and
 M the mass flux

Kain and Fritsch (1990) approach in KFB and EDKF

 \triangleright The two schemes use this approach with an updraft radius R=50m but :

 \triangleright In KFB f(x) is gaussian while in EDKF f(x) is a flat distribution

 \triangleright Both cases were discussed in Kain and Fritsch : « It appears that the general form of the mass flux profile is primarily dictated by the environmental thermodynamic profile. »

 \triangleright I tested flat distribution in KFB \blacktriangleright impacts are low

FIG. 2. Hypothetical distribution of environmental mass, $E(x)$; updraft mass, $U(x)$; and total mass, $E(x) + U(x)$, in mixed updraft subparcels as a function of the fraction of environmental air in individual mixed subparcels. The total mass distribution is based on the Gaussian distribution function.

Figure 2 and 6 from Kain and Fritsch (1990)

Gaussian distribution (KFB)

Flat distribution (EDKF) \rightarrow

FIG. 6. Hypothetical distributions of environmental mass, $E(x)$; updraft mass, $U(x)$; and total mass, $E(x) + U(x)$, in mixed updraft subparcels as a function of the fraction of environmental air in individual mixed subparcels. The total mass distribution is based on a simple flat distribution function.

First test in ARPEGE 1D ARM shallow cumulus case

Cloud water content (g/kg)

To understand the problem, the simulation is re-started for one time step from an AROME simulation

TKE thermal production

AROME oper Δ**t = 60s**

Stabilization technics (Valéry Masson)

For a conservative variable Φ we need to resolve :

$$
\left(\frac{\partial \phi}{\partial t}\right)_{MF} = \frac{\partial}{\partial z} \left(\overline{w' \phi'}\right)_{MF} = \frac{\partial}{\partial z} \frac{M}{\rho} \left(\phi_{up} - \overline{\phi}\right)
$$

The classical way is to use an implicit formulation which leads to a tridiag. To further stabilize the system at large time step a time spliting technics is also introduced.

A small time step is defined :
$$
\Delta t = n \delta t
$$

Then a loop is iterated :
$$
\delta \phi_{MF}^{i+1} = \delta t \frac{\partial}{\partial z} \frac{M^i}{\rho} (\phi_{up}^i - \phi^i)(+\delta \phi_{turb})
$$

\nUpdate
\n**CPITS**
\n**Corresponding**
\n**Corresponding**

By analogy with the sedimentation flux in a microphysics scheme : $F_r = \rho q_r V_t$

It is possible to apply the statistical formulation as it was introduced in Geleyn et al (2009) and described in Bouteloup et al (2011) in the framework of ARPEGE and AROME. A « mass flux » courant number and two proportions are introduced :

$$
C_{MF} = \frac{\Delta t}{\Delta z} \frac{M_u}{\rho}
$$
 $P_1 = Min(1, C_{MF})$ $P_2 = Max\left(0, 1 - \frac{1}{C_{MF}}\right)$

The flux of a variable Φ is computed from bottom to top using the following equation

$$
F_\phi^{\; j+1} = \rho \big(\overline{w^{\prime} \phi^{\prime}} \big)_{\!M\!F}^{\!j+1} = P_1 \, \frac{\rho \Delta z}{\Delta t} \big(\phi_{\!up} - \overline{\phi} \big)^{\!j} + P_2 F_\phi^{\;j}
$$

And the tendency is computed by : $\Delta \phi_{MF} = \frac{\Delta t}{\rho \Delta z} \left(F_{\phi}^{\ j} - F_{\phi}^{\ j+1} \right)$

Impact of new formulation in AROME 1D

Impact of new formulation in AROME 3D

27 hours forecast, low level cloudiness

Implicit formulation Statistical formulation

Zonal mean impact of EDKF in ARPEGE (Δ**t = 600s)**

Water vapor zonal mean tendency g/kg/day

 -100 Min = - 0.134566128254 Max = 0.878151817789
Max = 0.878151817789 -200 0.1984008 -300 $0.7 - 0.6$ $\widehat{\mathbb{F}}_{2}^{400}$ $-0.6 - 0.5$ $-0.5 - 0.4$ a
Pasanus
Resasure $0.4 - 0.3$ $0.3 - 0.3$ $-0.2 - 0.1$ $-0.1 - 0.1$ $-700 0.1 - 0.2$ $0.2 - 0.3$ -800 85-84 $0.4 - 0.5$ $-900 0.5 - 0.6$ 05-07 -1000 -so -40 -20 ه
latitude (deg) 20 40 60

 \rightarrow too much cloud \rightarrow impact on temperature

Too much water vapor around 850hpa

Global mean impact of EDKF in ARPEGE

Water vapor global mean tendency due to ED and shallow MF

Come back in SCM model : ARM cumulus, EDKF against LES (Pergaud et al 2009)

Detrainment is too strong at cloud base

Figure 9 of Pergaud et al (2009)

Behaviour consistent with ARPEGE simulations

Return to EDKF equations first minor modifications

Updraft vertical speed equation \bigtriangledown w

$$
w_u \frac{\partial w_u}{\partial z} = aB_u - b\epsilon w_u^2
$$

But, when
$$
B_u > 0
$$
, $\varepsilon_{dry} = C_{\varepsilon} \frac{B_u}{w_u^2} \Rightarrow w_u \frac{\partial w_u}{\partial z} = (a - bC_{\varepsilon})B_u$

There is no dependence to vertical speed \rightarrow too high speed. A new term is added to this equation :

$$
w_u \frac{\partial w_u}{\partial z} = (a - bC_{\varepsilon})B_u \left(\frac{\delta_0 w_u^2}{\delta_0 w_u^2} \right) \quad \text{with} \quad \delta_0 = 0.005
$$
\n
$$
C_{\varepsilon} : (0.55 \Rightarrow 0.4)
$$

Then some coefficients are adjusted \rightarrow

But no change of entrainment and detrainment in the cloud … (next step ?)

 C_{δ} : (-10 \Rightarrow -6)

 $a: (1 \Rightarrow 1.2)$

First results with these modifications

Reduction (improvement ?) of the mass flux ... **Example 20** ... but degradation of the cloud ...

... and improvement in ARPEGE 3D \rightarrow

Conclusion and prospects

EDKF can run in ARPEGE with operational time step

 EDKF seems to work well in AROME but in ARPEGE current settings are not appropriate

 \triangleright Simple adjustments give better results

 Attention shoul be paid to the transition zone between dry and cloudy part of the scheme (entrainment and detrainment formulation)

 \triangleright Work must be done to understand the differences between the two prognostic TKE schemes

References

 Bougeault P, Lacarrère P (1989) Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon Weather Rev **117**:1872-1890

 \triangleright Bouteloup Y, Seity Y, Bazile E (2011) Description of the sedimentation scheme used operationally in all Météo-France NWP models. Tellus **63A**:300-311

 \triangleright Bechtold P, Bazile E, Guichard F, Mascart P, Richard E (2001) A mass flux convection scheme for regional and global models. Q J Roy Meteorol Soc **127**:869- 886

 Cuxart J, Bougeault P, Redelsperger JL (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J Roy Meteorol Soc **126**:1-30

 Geleyn J-F, Catry B, Bouteloup Y, Brozkova R (2008) A statistical approach for sedimentation inside a microphysical precipitation scheme. Tellus **60A**:649-662

 \triangleright Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci **47**:2784-2802

 \triangleright Pergaut J, Masson V, Malardel S, Couvreux F (2009) A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Boundary-Ε Layer Meteorol **132**:83-106roujumo un tempo u avanĉe

Thank you for your attention !

EDMF meeting, Delft, June 14-15 2011