Diagnosing Cloud Feedbacks using Nonlinear Radiative Kernels B. Sanderson

Monday, June 6, 2011

Outline

Linear Kernels in CAM Cluster analysis Nonlinear kernel analysis

Linear Kernels in CAM

Monday, June 6, 2011

Adjusted Cloud Feedback

Monday, June 6, 2011

Non-linear estimator

Shortwave dACRF (2X-1X CO2)

Longwave dACRF (2X-1X CO2)

NN. estimate for SW (2X-1X CO2)

NN. estimate for LW (2X-1X CO2)

Non-linear estimator

Clustering Jan cam3.1 Apr cam3.1 Jul cam3.1 Oct cam3.1

Jan cam4.0 Apr cam4.0 Jul cam4.0 Oct cam4.0

Jan cam5.0 Apr cam5.0 Jul cam5.0 Oct cam5.0

Clustering

St/Sc Regions

Clustering

Summary

•New non-linear kernel technique allows direct estimate of cloud forcing changes from P/Tau diagram output

 Increased CAM5 sensitivity has two main causes: low cloud, shortwave feedback outside Sc regions and absence of deep convective negative feedback

•To Do: COSP input, Uncertainty Analysis and Multimodel ensemble