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* In this model: global cloud feedback dominated by the tropical cloud response
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* In this model: global cloud feedback dominated by the tropical cloud response
* Tropical cloud response associated with a strong decrease of low-level clouds
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* In this model: global cloud feedback dominated by the tropical cloud response
* Tropical cloud response associated with a strong decrease of low-level clouds

How credible is this projection ?



How to gain confidence in GCMs projections ?

(1) Bottom-Up approach : evaluate and improve the physical basis of climate models
through large-scale and process-scale evaluations (WP3)
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How to gain confidence in GCMs projections ?

(1) Bottom-Up approach : evaluate and improve the physical basis of climate models
through large-scale and process-scale evaluations (WP3)

(2) Top-Down approach : understand the models’ results & identify critical processes
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Analysis of the tropical mean cloud response

e Proxy w for large-scale motions: wsoo,pa.

e Decomposition of the tropical circulation

into dynamical regimes: fj;o P,dw=1

e Composite of cloud or radiative variables

in each dynamical regime: C,

e Tropical average: C = fj;o P, C, dw

PDF (normalized)

U 1 1 1 x
-80 -60 -40 -20 0 20 40 60 80
500 hPa @& (hPa/day)

Bony et al. 2004

5C —[ﬁ >, 5P, dw} Q”*j P, 5C, {m}
dynamic thermodynamic
component component




Analysis of the tropical mean cloud response
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Analysis of the tropical mean cloud response

Coupled ocean-atmosphere GCM
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In the OAGCM: Tropical mean CRF response associated with
large CRF and cloud changes in regimes of moderate subsidence



Analysis of the tropical mean cloud response
to a prescribed uniform warming (+2K)
In idealized atmospheric simulations (AMIP, aqua-planet)
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- Tropical mean CRF response also dominated by the (SW) “thermodynamical” component

- This component is dominated by the cloud response in regimes of moderate subsidence



Analysis of the tropical mean cloud response
to a prescribed uniform warming (+2K)

In idealized atmospheric simulations (AMIP, aqua-planet)

Cloud w20 3D
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- Tropical mean CRF response also dominated by the (SW) “thermodynamical” component

- This component is dominated by the cloud response in regimes of moderate subsidence



Analysis of the tropical mean cloud response
to a prescribed uniform warming (+2K)

In idealized atmospheric simulations (AMIP, aqua-planet)
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- Tropical mean CRF response also dominated by the (SW) “thermodynamical” component

- This component is dominated by the cloud response in regimes of moderate subsidence

- May this behaviour be reproduced with a Single Column Model (SCM) ?



Analysis of the tropical mean cloud response
to a prescribed uniform warming (+2K)
in Single Column Model simulations
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Large-scale forcing from aquaplanet simulations
+ stochastic forcing added on large-scale omega
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Analysis of the tropical mean cloud response
to a prescribed uniform warming (+2K)
through a hierarchy of models

OAGCM, AGCM, Aqua-planet Single-Column Physical processes &
parameterizations
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* Physical interpretation of the decrease of low-level clouds ?
— increase of the (clear-sky) radiative cooling aloft
— enhanced shallow convection
— RH decrease at low levels

* Relationship between RH and cloud fraction ?

— statistical cloud parameterization



Influence of the model formulation on the magnitude
of PBL cloud feedback in climate change
(1) 1D simulations

PBL cloud amount predicted by a statistical cloud scheme
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f depends on RH and on the assumed subgrid-scale variability (ssv)
However, ssv also affects RH (e.g. through the occurrence of precipitation)

If our SCM, increasing the ssv makes the PBL drier, less cloudy & less sensitive

What about 3D simulations ?



Influence of the model formulation on the magnitude
of PBL cloud feedback in climate change
(2) 3D simulations (AMIP, aquaplanet)
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As in the SCM, increasing the ssv makes the PBL drier, less cloudy & less sensitive

Similar results for other perturbations (e.g. removing cloud-radiative effects)



CONCLUSION

* Analysing the cloud response to global warming in a hierarchy of IPSL-CM5A
model configurations (OAGCM, AGCM, Aqua-planet, SCM) can help to:

- extract robust responses
- understand physical processes
- understand the dependence of cloud feedbacks on model formulation

* Such analyses will be possible for EUCLIPSE GCMs thanks to :

- CMIP5/CFMIP experiments
- CGILS experiments (CFMIP-GCSS Intercomparison of LES and SCMs)

* On-going work:

- explore ways to reproduce the 3D cloud behaviour with a 1D model
- refine the physical interpretation of the cloud response
- look at the model version with new physics

* Model evaluations against satellite / in-situ observations, as well as NWP evaluations
can then help to put constraints on processes that have been pointed out as most critical,
and thereby help assess the credibility of the model cloud feedbacks.
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