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 UCLA/MPI LES (non-precipitating, fixed radiation)

 Forcing/boundary conditions :

uft = U

SST

 Run to equilibrium (2 weeks if necessary)

Sensitivity of equilibrium non-precipitating shallow convection



Sensitivity of equilibrium non-precipitating shallow convection
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 Sensitivity to SST

 Instability :



 Sensitivity of cloud cover / LWP

Sensitivity of equilibrium non-precipitating shallow convection

 Dataset constitutes a nice framework to test SCMs’ sensitivities



ITCZ
GCM precipitation regimes



Systematical bias of GCMs

Double ITCZ ‘syndrom’
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from
 Barsugliet al. (2005)

Aquaplanet GCMs

Some GCMs do simulate different regimes 
in aquaplanet configurations

Uniform solar forcing (Wm-2)
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Even multiple equilibria!

It might help to improve our understanding of these 
regimes to address the double ITCZ problem

NCAR AGCM over a slab ocean

ITCZ



Experiments with the CNRM aquaplanet model: Boutheina Oueslati’s PhD project
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Experiments with the CNRM aquaplanet model: Boutheina Oueslati’s PhD project

Regimes of precipitation and moisture convergence

nP → n maxima of precipitation

nCZ → n ITCZ

No multiple equilibria
Inter-hemispheric 

symmetry in all cases
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Oueslati et al. (2011)

Difference with C(F)MIP runs:
no daily cycle of insolation



Things we’d like to do

 Characterization of regime transitions and associated feedbacks, in particular the 
transition 1P – 2P.

 Characterization of associated cloud fields and cloud feedbacks.

 Sensitivity studies to the parameters of the convection scheme.

 Intercomparison of models: precipitation regimes, cloud fields…

ITCZ

Precipitation controlled by 
convergence:

Weaker SST gradients

Weaker 
temperature 

advection
off the equator

Weaker convergence 
at the equator

Weaker precipitation
at the equator

Even weaker Ta gradients 
(and pressure gradients)



MJO
Cloud signature in GCMs
and cloud mechanisms



Observed MJO : TRMM radar + IR MJO
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Multiple mechanisms

Role of clouds in the MJO MJO

 Cloud-radiative forcing changes the scale selection of tropical disturbances;

 Moistening by shallow convection east of the MJO deep convection;

 Surface cloud radiative forcing intervenes in the ocean-atmosphere coupling;

Fuchs and Raymond (2002), Bony and Emanuel (2005), Zurovac-Jevtić et al. (2007)

Mapes (2010)

Sobel and Gildor (2003)



MJO Diagnostics by the CLIVAR MJO Working Group MJO
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 Use modified CLIVAR diagnostics to document the cloud signal associated to 
GCM MJOs; 

 Dig in for insights in the biases.

MJOThings we’d like to do



MJODoes GCM simulation of MJO get better?
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Thank you


