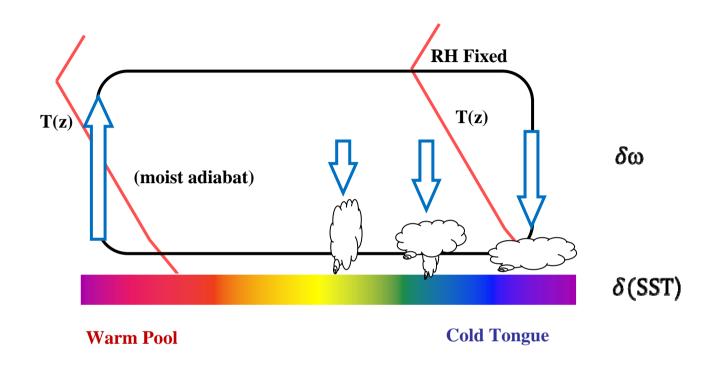
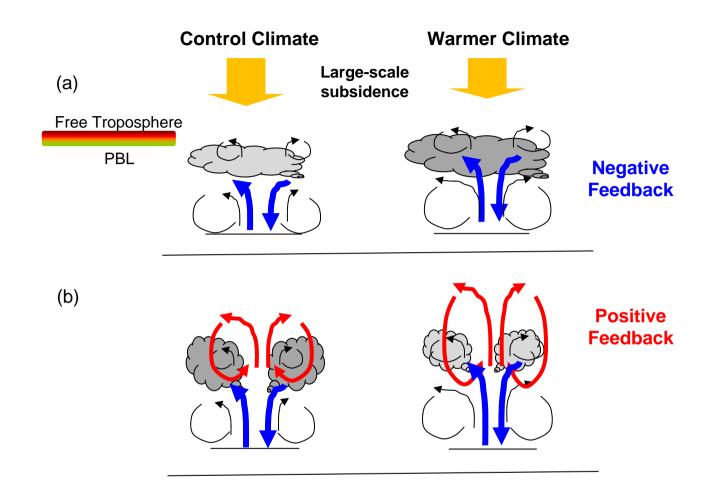

A Recap of the First Phase CGILS Results:

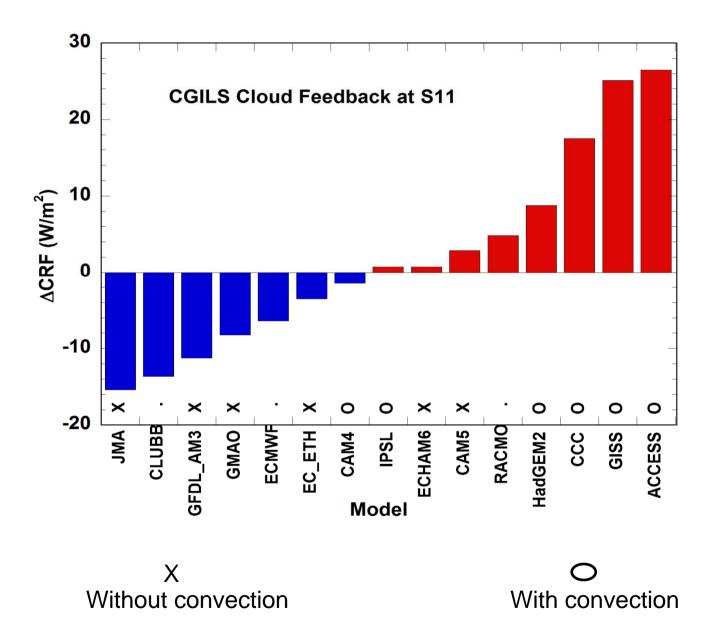

What Have We Learned?

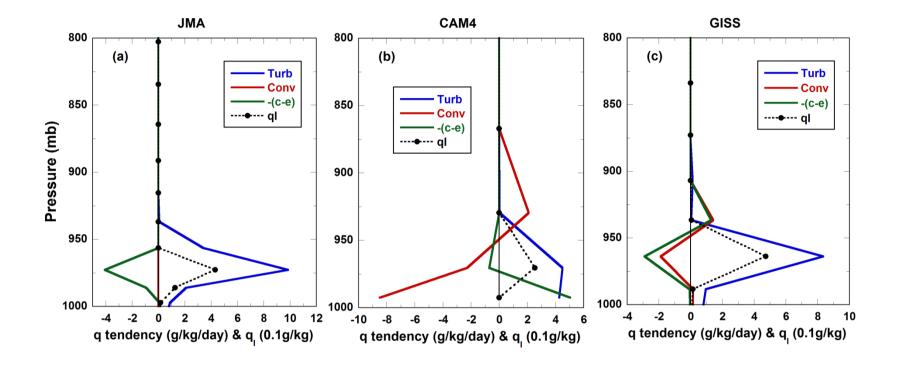
Minghua Zhang
Stony Brook University/SUNY

And CGILS Participants

GPCI




2XCO₂ subtropical oceans


Perturbation	Description	Reference
δ SST(15-35N)	$2.5\pm0.5~{ m K}$	<i>IPCC</i> [2007] Fig. 10.6 and Box 10.2
$\delta\omega(500~\mathrm{hPa})$	-5±3%	Vecchi and Soden [2007] Fig. 1; Webb et al. [2012] Fig. 7f/9f
$\delta \mathrm{EIS}$	$0.6\pm0.2~{ m K}$	Webb et al. [2012] Fig. 7e/9e
δRH	-1.5±1%	Richter and Xie [2008] Fig. 10; Sherwood et al. [2010] Fig. 2
δWS	-1.5±1.5%	Lu and Cai [2009] Table 3 (Tropical)

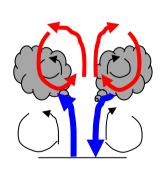
Bretherton et al. (2013, JAMES)

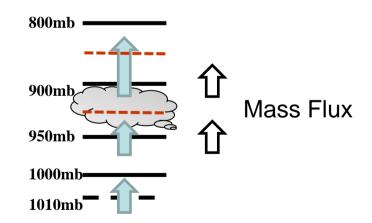
- 1. An idealized case to do sanity checks of SCMs, to understand how PBL and shallow convection parameterizations respond to perturbations of large-scale fields.
- 2. Physical processes of low cloud feedbacks in SCMs.

$$\frac{\partial q_{v}}{\partial t} = \left(\frac{\partial q_{v}}{\partial t}\right)_{turb} + \left(\frac{\partial q_{v}}{\partial t}\right)_{conv} - c_{stra} - \left(\frac{\partial q_{v}}{\partial t}\right)_{LS}$$

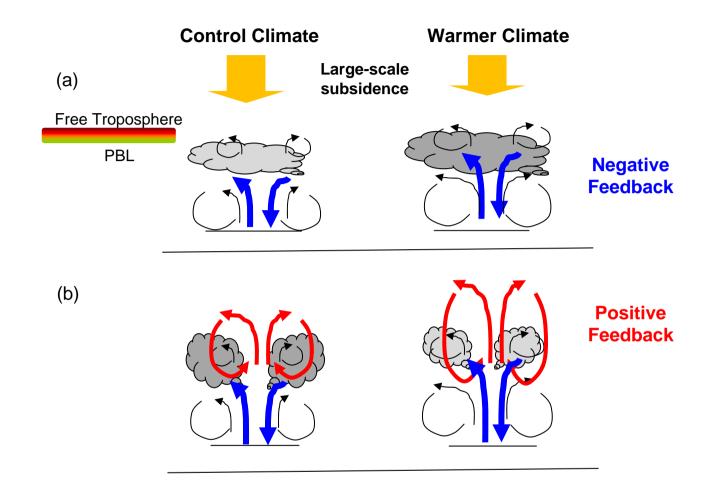
- 1. An idealized case to do sanity checks of SCMs, to understand how physical parameterizations respond to perturbations of large-scale fields.
- 2. Physical processes leading to low cloud feedbacks in SCMs.

Negative cloud feedback from mixing by the PBL schemes

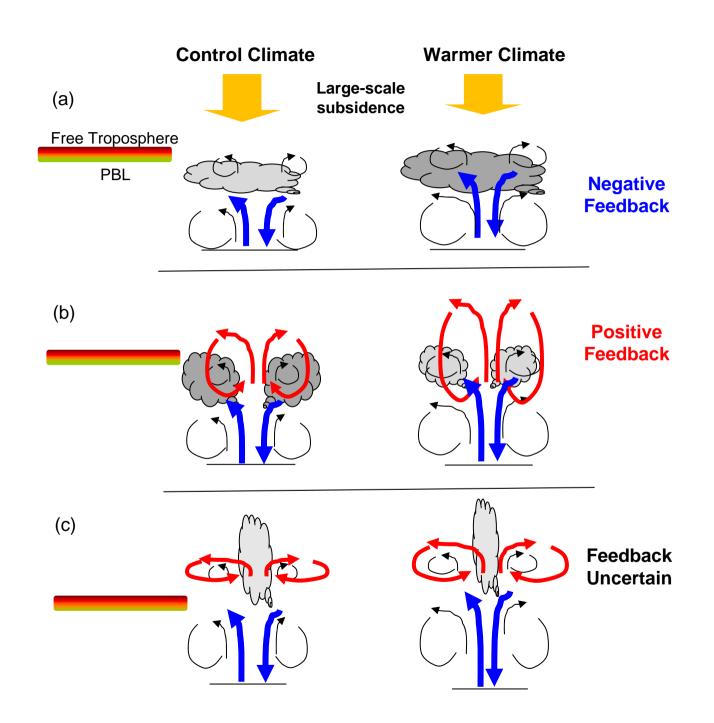

Positive feedback from mixing by the shallow convection schemes

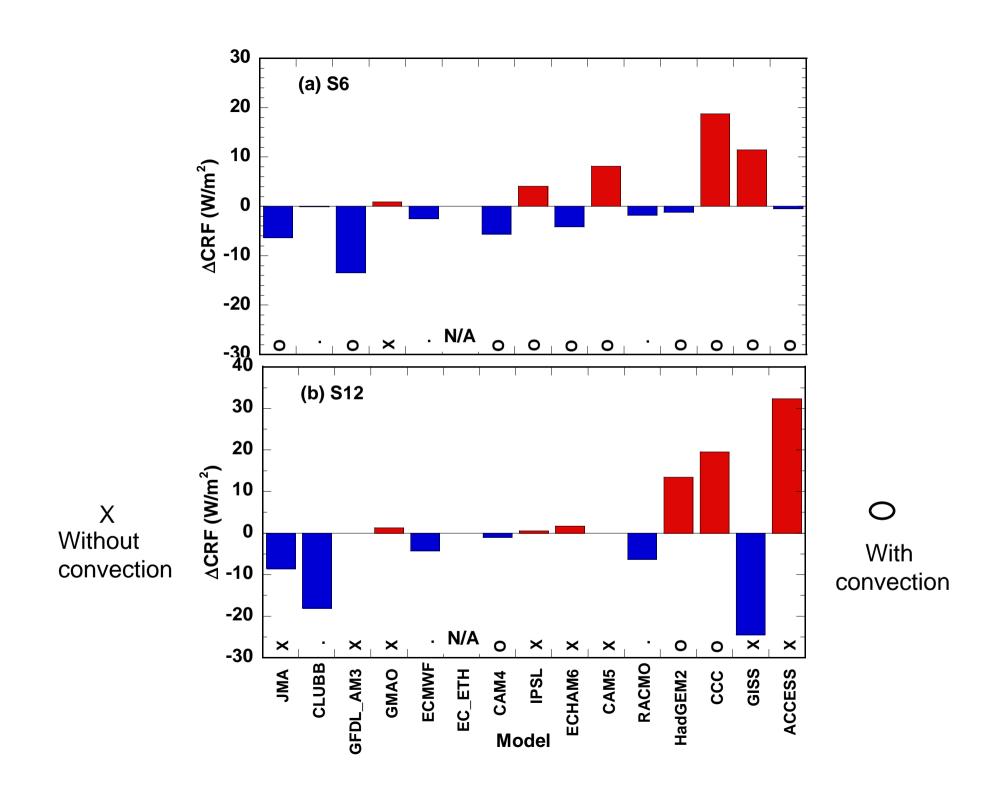

Convection dominates when it occurs

Why does convection dominate for shallow cu?


$$\overline{w'q'}\Big|_{Turb} = -K_c(\frac{\partial q}{\partial z} - \gamma_c), \quad \overline{w'q'}\Big|_{Turb} \approx LH \propto (q_s - q_c)$$

$$\overline{w'q'}\Big|_{Conv} = M(z)(q_c - q_e)$$

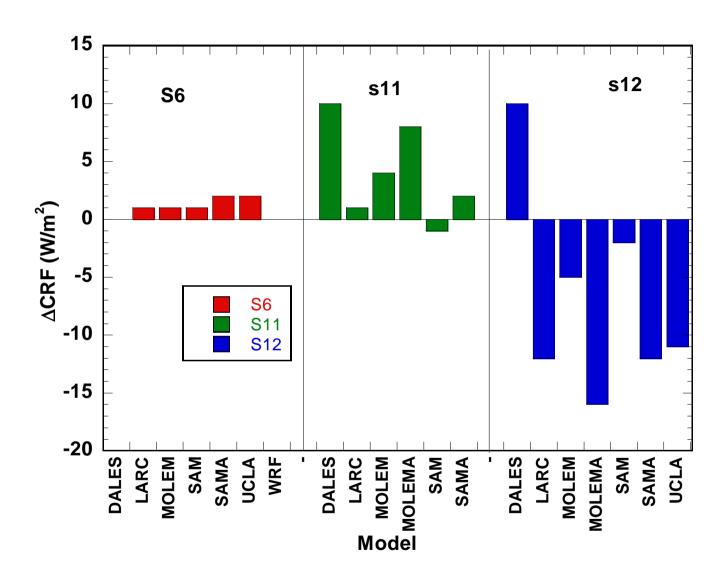



Change of Moisture Flux

Shallow <u>Cu</u>mulus <u>Dilution – Surface Turbulence Moistening</u>

CGILS "SCuD-STeM" Competition Mechanism

- 1. An idealized case to do sanity checks of SCMs, to understand how physical parameterizations respond to perturbations of large-scale fields.
- 2. Physical processes leading to low cloud feedbacks in SCMs.


Negative cloud feedback from mixing by the PBL schemes

Positive feedback from mixing by the shallow convection schemes

In the GCM world, the frequency and type of convection matter.

- 1. An idealized case to do sanity checks of SCMs, to understand how physical parameterizations respond to perturbations of large-scale fields.
- 2. Physical processes of low cloud feedbacks in SCMs.
- 3. LES models as benchmarks

LES models simulated negative cloud feedback at the coastal stratus location S12, positive feedback at the stratocumulus and shallow cumulus locations S11 and S6.

- 1. An idealized case to do sanity checks of SCMs, to understand how physical parameterizations respond to perturbations of large-scale fields.
- 2. Physical processes of low cloud feedbacks in SCMs.
- 3. LES models as benchmarks

LES models simulated negative cloud feedback at the coastal stratus location S12, positive feedback at the stratocumulus and shallow cumulus locations S11 and S6.

The SCMs are generally consistent at S11 and S12 if the occurrences of convection are correct, but not at S6

What have we learned from the first phase of CGILS? – The Take Home Message

- 1. An idealized case to test PBL and shallow convection schemes
- 2. Physical processes of low cloud feedbacks in SCMs: the two competing mechanisms.

SCuD-STeM

CGILS first-phase results may not give the same cloud feedbacks as in GCMs, but the interpretation framework should be relevant.

3. LES results available as benchmarks

And ...

CGILS: Results from the First Phase of an International Project to Understand the Physical Mechanisms of Low Cloud Feedbacks in General Circulation Models

Minghua Zhang¹, Christopher S. Bretherton², Peter N. Blossey², Phillip H. Austin³, Julio T. Bacmeister⁴, Sandrine Bony⁵, Florent Brient⁵, Suvarchal K. Cheedela⁶, Anning Cheng⁷, Anthony D. Del Genio⁸, Stephan R. De Roode⁹, Satoshi Endo¹⁰, Charmaine N. Franklin¹¹, Jean-Christophe Golaz¹², Cecile Hannay⁴, Thijs Heus⁶, Francesco Alessandro Isotta¹³, Dufresne Jean-Louis⁵, In-Sik Kang¹⁴, Hideaki Kawai¹⁵, Martin Koehler¹⁶, Vincent E. Larson¹⁷, Yangang Liu¹⁰, Adrian P. Lock¹⁸, Ulrike Lohman¹³, Marat F. Khairoutdinov¹, Andrea M. Molod¹⁹, Roel A.J. Neggers²⁰, Philip Rasch²¹, Irina Sandu^{6,16}, Ryan Senkbeil¹⁷, A. Pier Siebesma²⁰, Colombe Siegenthaler-Le Drian¹³, Bjorn Stevens⁶, Max J. Suarez¹⁹, Kuan-Man Xu⁷, Knut von Salzen²², Mark J. Webb¹⁸, Audrey Wolf²³, Ming Zhao¹²

JAMES, Under Review

Co-Authors: Please check Tables 2-3 of the revised paper (PBL and cu)

CGILS Paper Status:

Zhang et al. 2012: CGILS Experimental Design, JAMES

Blossey et al. 2013: CGILS LES Results, JAMES

Bretherton et al. 2013: CGILS LES Analysis, JAMES

Zhang et al. 2013: CGILS SCM and Overview Results, JAMES, submitted

Brent and Bony 2012: IPSL

Kawai 2012: SOLA

Webb and Lock (2012)

??? (let us know)

The first 4 are available at http://www.atmos.washington.edu/~bloss/

CGILS Case Plots: http://atmgcm.msrc.sunysb.edu/cfmip

Next phases of CGILS for Discussion

4XCO₂

> Fast response

To evaluate SCM results against LES?

To compare SCM results with GCMs?

To compare the radiative forcing of 4XCO₂?

Other control variables DCMIP3 (RH, WS, Cd, EIS in addition to SST and ω)

- Are the changes similar among GCMs?
- > Should different models do the same perturbation experiments?

Next phases of CGILS for Discussion

Seasonal Variations

- > Cloud response to large-scale forcing, January and July
- Observations to compare (MAGIC)

Connection with GCM output at cfsites.

- Stratify data and link with processes
- Hypothesis testing (CGILS cfsites SCM GCM)

Need Champions!