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Fluid Dynamical Descriptions

BJORN STEVENS AND PIER SIEBESMA

From a fluid-dynamical point of view clouds are a turbu-

lent dispersion of condensate in a multi-phase and multi-

component flow. Their description thus evokes the lan-

guage of fluid mechanics. The necessarily multi-phase fluid-

mechanical description of cloudy flows thus requires a more

sophisticated understanding of thermodynamics, then for in-

stance one would encounter in single-component and single-

phase flows. In this chapter we present a concise overview

of the main equation systems, and concepts, that are used

to describe clouds and cloudy flows. It is assumed that the

reader has a basic background in thermodynamics and fluid

mechanics, and this text attempts to build on this back-

ground to introduce the special elements related to both

topics as applied to potentially cloudy systems.

4.1 Thermodynamic Systems

4.1.1 A Multi-Component Multi-Phase System

The atmosphere, or air, as we experience it, is a multi-

component gas in which a great variety (if not great amount)

of finescale particulate matter is suspended. The gas phase

constituents include several major gases (Nitrogen, Oxygen,

Argon) which through the current era have existed in a rel-

atively fixed proportion to one another. To a large degree

these determine the thermodynamic properties of “dry air”,

that is an ideal mixture composed of 78.08 % N2, 29.05 % O2

and 0.934 %Ar. Additionally, the atmosphere contains vari-

able vapors such as carbon dioxide and water, along with

a host of seemingly minor gases (e.g., Neon, Helium, Ni-

trous Oxide, Ozone, Methane and other organics) some of

which can be important for determining the radiative prop-

erties of the atmosphere and the quality of the air we breath.

Of the variable constituent, water is the most striking as it

ranges from abundances that vary over many many orders

of magnitude, from nearly zero in the coldest regions of the

upper troposphere, to as much as 4 % by volume over very

warm bodies of water. Because of its proclivity to change

phase and the manner in which these phase changes affect

the local temperature on the one hand, and foster diverse

interactions with radiant energy on the other, water indeli-

bly marks motions in the lower atmosphere on all time and

spatial scales so that it is hard to think properly about atmo-

spheric motions, let along clouds, without considering how

water is coupled to them. In this sense the simplest, accurate

description of the dynamic atmosphere demands requires a

description that admits for at least two-components, dry air

and water, with one component (water) admitting multiple

phases.

The basic thermodynamic properties of the atmosphere

thus depend on its component parts. Typically these com-

ponent parts are defined in terms of their mass, m such that

for an equilibrium system four constituents of the moist at-

mosphere can be defined, dry air, vapor, liquid water, and

solid (ice) water, denoted by subscripts d, v, w and i respec-

tively. The total mass of the system is thus given by sum of

the consituent masses such that

M = Md +Mv +Mw +Mi. (4.1)

The normalized, or specific mass of a component x is denoted

by qx = Mx/M. Is useful to distinguish between equilib-

rium condensed phases associated with clouds, which evolve

with the thermodynamic state in a more or less irreversible

way, and non-equilibirum phases, generally larger hydrom-

eteors that develop through irreversible microphysical pro-

cesses such as the collision and coalescence of water droplets.

Because they are generally larger, non-equilibirium phases

of water in the atmosphere are more dilute and short-lived.

Their presence requires the introduction of a more expan-

sive view of the thermodynamic constituents within a moist

atmosphere, for instance, the mass of rain, snow, graupel

and hail. The focus in this section is on a thermodynamic

description for an equilibrium system.

Local thermodynamic systems are identified with control

volumes, sometimes referred to as air parcels, which are as-

sumed to be much smaller than the scale over which thermo-

dynamic properties vary. Diffusion rapidly homogenizes the

atmosphere on scales smaller than the Kolmogorov length

scale, η = (ν3/ε)1/4, where ν is the viscosity of the atmo-

sphere and ε is the turbulent dissipation rate. In vigorous

cumulus clouds the dissipation rate may approach 0.05 m2

s−3, which given a kinematic viscosity, ν = 1.5 × 10−5 m2

s−1 implies that variations in thermal properties are not

present on scales less than η = 0.5 mm. This is several thou-

sand times larger than the mean free path of an air molecule,

making the concept of an air parcel a useful one.

A special simplification of atmospheric thermodynamics

arises from the very small volume fraction of the conden-

sate phases. Typically the specific condensate mass within

a cloud is less than 1 g kg−1, and given the approximately

thousand fold increase in density in the condensate versus

vapor phases (for typical atmospheric pressures) this implies
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that the volume fraction of condensate in the atmosphere

can safely be assumed to be negligibly small. The dry-air

and vapor are further approximated as ideal gasses (point

particles) in an ideal mixture, so that the total volume of

the system is seen by both the gas and vapor constituents,

i.e., αv = V/Mv denotes the specific volume of the vapor.

Because the population of condensate particles is also rela-

tively dilute, the concept of an equilibrium thermodynamic

system in the presence of condensate often needs to be re-

laxed to approximately describe the state of larger systems,

ones in which a large population of condensate particles can

be assumed to be randomly distributed. In this case, one

often imagines an air parcel on the scale of a 1 m3. Strictly

speaking volumes of air this large cannot be thought of in

terms of a single temperature, but the error of this approx-

imation is typically much less than those associated with

other approximations invoked in the description of such sys-

tems.

4.1.2 A notational challenge

A particular challenge of describing moist atmospheric sys-

tems is notational. Many symbols are overloaded. As an

example, the symbol v is used to denote the specific vol-

ume in thermodynamic systems, or the second component

of the velocity vector in fluid dynamical systems. The ro-

man form, “v” of the same letter is used to denote, in the

form of a subscript “vapor”, and sometimes ”virtual”. As a

further example, s is often used to denote entropy, but also

dry static energy. Its roman form denotes saturation, or a

surface quantity. This chapter is not the proper place to at-

tempt to systematically overhaul an antiquated terminology,

but some slight deviations are introduced. For instance we

refrain from the use of the virtual temperature terminology

in favor of a density temperatures, and we use fraktur fonts

for classical thermodynamical functions such as entropy, s,
enthalpy h and the gibbs energy g; and q is used to denote

heating so as to distinguish it from, q, the specific mass.

Implicit above is also the distinction between roman fonts

which reference a word, such as “w” for liquid water, and

italic fonts for mathematical variables, e.g., w for the ver-

tical velocity. The value of this distinction is not simply to

facilitate the further overloading of symbols, but to distin-

guish, for instance, “max” from max the former denoting a

maximum, the latter a product of three variables, m, a and

x.

4.1.3 Equation of State

Taking an air-parcel to be comprised of an ideal mixture of

ideal gases, perhaps in the presence of condensate, the equa-

tion of state is that for an ideal gas of variable composition,

such that

p = pd + pv =

(
MdRd

V
+
MvRv

V

)
T, (4.2)

where Rd and Rv are the specific gas constants of ’dry air’

and water vapor respectively. Introducing subscript ’c’ and

subscript ’t’ to denote the total amount of water, and total

amount of condensate respectively, so that

qt = qv + qw + qi = qv + qc, (4.3)

and defining the density of the gaseous/vapor mixture as

ρ = (Md + Mv) allows one to formulate the equation of

state as

p = ρRT (4.4)

where the specific gas constant depends on the amount and

distribution of water,

R = (1− qc)Rd + qv(Rv −Rd). (4.5)

To avoid dealing with a state dependent gas constant it is

customary to define a density temperature, such that

p = ρRdTρ where Tρ = T (1 + εqv − qc) (4.6)

and

ε =

(
Rv

Rd
− 1

)
≈ 0.608. (4.7)

In the absence of water the density temperature is the air

temperature, otherwise it can be interpreted as the tem-

perature of a dry air parcel having the same density and

temperature as the given air parcel.

Local density perturbations are associated with vertical

accelerations, or the buoyancy, b, of an air parcel, whereby

b = −g ρ
′

ρ0
≈ g

T ′ρ
Tρ,0

. (4.8)

from the definition of the density temperature, assuming

that pressure perturbations are small compared to density

perturbations, i.e., p′/p0 � T ′/T0.

4.1.4 The First Law and its Consequences

For an atmospheric system it proves useful to use temperate

and pressure as the thermodynamic coordinates. The choice

of pressure, rather than volume as is more customary in the

description of laboratory systems, is motivated by the fact

that the atmosphere is an open system, so that pressure

is fixed externally through the mass of air and the gravita-

tional acceleration. In this form the first law is most usefully

expressed as

q = dh− αdp (4.9)

where q is the heating, and h is the specific enthalpy, or heat

function,

h = qdhd + qvhv + qwhw + qihi. (4.10)

The isobaric specific heat, cp ≡ (∂h/∂T )p , so that the en-

thalpy can be written as

h =
(
qdcp,d + qvcp,v + qwcw + qici

)
T, (4.11)

which expresses the fact that for an ideal gas (∂h/∂p)T van-

ishes, and the subscript p for the specific heats of liquid

water and ice are neglected because these are assumed to

be incompressible phases. The vaporization enthalpy, Lv is

defined as the difference between the vapor and liquid water

enthalpies, such that

Lv = hv − hw. (4.12)
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Table 4.1. Common thermodynamic constants

Thermodynamic Quantity Value Unit

Rd 0.2871 kJ kg−1 K−1

Rv 0.4615 ”

cp,d 1.004 ”

cp,v 1.864 ”

cw 4.184 ”

ci 2.108 ”

Lv 2500.8 kJ kg−1

Ls 2834.1 ”

Here the enthalpies of vaporization and sublimation are

specified at 273.15 K, both decrease as temperature

increases.

For an ice-free system one can use the definition of Lv to

substitute for hv in Eq. (4.10) such that

he = ceT + qvLv where ce = qdcp,d + qtcw. (4.13)

Alternatively substituting for hw in Eq. (4.10) yields

h` = c`T − qwLv where c` = qdcp,d + qtcv. (4.14)

The apparent differences in the enthalpies defined in

Eq. (4.13) as compared to Eq. (4.14) arise from differences

in the definition of the specific heats. Similar formulations

based on the sublimation enthalpy can be developed for

liquid-free systems. Values for the specific heats and the

phase-change enthalpies are provided along with those for

the gas constants in Table 4.5.

4.1.5 The Second Law and its Consequences

The second law postulates the existence of an entropy func-

tion, denotes by S, such that in equilibrium values of other

quantities maximize the entropy function. For a reversible

process

Tds = dh− αdp (4.15)

As an extensive state function, like enthalpy, the entropy

can be decomposed into its constituent parts, so that

s = qdsd + qvsv + qwsw + qisi. (4.16)

following Eq. (4.10). For an ideal gas, such as dry air, the

entropy can be written in terms of a reference entropy so

that for instance,

sd = sd,0 + cp,d ln(T/T0)−Rd ln(p/p0), (4.17)

where s0 is the entropy of a reference state at temperature

T0 and pressure p0.

For an isobaric isothermal system it follows from

Eq. (4.15) that for a reversible process

0 = d (h− T s) , (4.18)

which defines the Gibb’s free energy, g = h − T s, i.e., the

energy available to do work in an isothermal and isobaric

system. Because, in equilibrium, h and T maximize s, the

Gibb’s potential of a system in equilibrium is a minimum.

Figure 4.1 Saturation vapor pressure over liquid (dark grey)

and ice (blue). At T = 0◦C the saturation vapor pressure is
610.15 Pa. At T = −30◦C the saturation vapor pressure over

liquid water is 50.8 Pa as compared to 38.0 Pa over ice at the

same temperature. Saturation with respect to liquid for
T < 0◦C are relevant because super-cooled water is often

present in the atmosphere, with homogeneous nucleation of ice

particles first occurring at about T = −38◦C

4.1.6 The Clapeyron Equation

The condition that the for an equilibrium system the Gibbs

free energy is a minimum implies that for a system in which

there is an equilibrium between two phases, say liquid wa-

ter and water vapor, then the specific Gibbs energy of each

phase must be equal, i.e., gv = gw. Otherwise a redistribu-

tion of the mass between the phases could lower the total

GIbbs energy. We further note that a change in the equi-

librium state of the system, say associated with a change

in temperature, implies a change in the Gibbs energy, such

that

dg = dh− sdT − sdT = αdp− sdT, (4.19)

hence

dgv = αvdp− svdT and dgw = αwdp− swdT. (4.20)

But because the maintenance of equilibrium requires that

dgv =d gw it follows that for such a transformation the

vapor pressure changes with temperature as,

dp =
sv − sw
αv − αw

dT. (4.21)

This is the Clapeyron equation describing how vapor pres-

sure changes with temperature. By substituting for αv from

the idea gas law, and noting that for a saturated system

αv � αw and that Lv/T = sv−sw, Eq. 4.21 can be written

in the form

d (ln p) =
Lv

RvT 2
dT. (4.22)

These approximations are due to Clausius and Eq. 4.22 has

come to be called the Clausius Clapeyron Equation, Fig. ??.
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4.1.7 Potential Temperatures

The first and second laws dictate how temperature changes

between a give state, and a reference state defined by its

pressure and phase distribution, i.e., the triplet {p, qv, qw},
which in the generic case is denoted by subscript ?. The ref-

erence state temperature, θ?, is a property of the system and

is often used to label the state of the parcel, as the reference

state value of temperature is invariant for reversible trans-

formations of the air parcel, and is thus a convenient way

to compare air parcels in different parts of the atmosphere,

where for instance the pressure or humidity may vary.

To illustrate the concept, consider a reference state where

all of the vapor is condensed into liquid, such that qv,? = 0

and p? = π = 105 Pa. This particular reference state

{π, qv, qw}e = {π, 0, qt} is denoted by subscript “e”, and

the temperature attained by the air parcel when reversibly

transformed to this state is denoted by θe. For such a pro-

cess, s = se, hence

qdsd + qvsv + qwsw − qdsd,e − qtsw,e = 0, (4.23)

equivalently

qdsd + qtsw − qdsd,e − qtsw,e + qv(sv − sw) = 0. (4.24)

Without loss of generality an expressions for the entropy of

the given state can be formed in terms of the values of the

entropy in the reference state, from Eq. (4.17), such that

sd = sd,? + cp,d ln(T/θe)−Rd ln(pd/π), (4.25)

sw = sw,? + cw ln(T/θe), (4.26)

fom which it follows that

ce ln(T/θe)−Re ln(pd/π) + qvLv + qv(sv − ss) = 0, (4.27)

given that Re = qdRd is the specific gas constant of the

reference state and

sv − sw = sv − ss + ss − sw

= sv − ss + (Lv/T ). (4.28)

The difference between the vapor and saturation vapor en-

tropy is measured by the relative humidity, H = pv/ps,,

sv − ss = −Rv

[
ln

(
pv
p0

)
− ln

(
ps
p0

)]
= −Rv ln H. (4.29)

Given Eq. (4.28) and (4.29), Eq. (4.27) can be solved di-

rectly for the temperature corresponding to the reference

state {π, 0, qt} corresponding to pressure, vapor specific hu-

midity and the specific mass of condensed water, such that

θe = T

(
π

p

)Re/ce

Ωe exp

(
Lvqv
ceT

)
, (4.30)

where

Ωe =

[
1 +

qvRv

Re

]Re/ce

H−qvRv/ce (4.31)

Ωe is a factor that is very near unity, and (because qt � 1)

depends only very weakly on the thermodynamic state.

The reference state temperature, θe is frequently used to

measure the thermal state of the atmosphere, and is called

the equivalent potential temperature–hence the subscript e..

In the special case that qt = 0 the equivalent potential tem-

perature reverts to the more common dry potential temper-

ature,

θ = T

(
π

p

)Rd/cp,d

(4.32)

Differing only through the contribution of the entropy of

moisture to the final reference state temperature. θe has

an advantage over the dry potential temperature in that it

remains invariant under phase changes between the liquid

and vapor state, hence it proves to be a powerful variable

for describing cloud processes.

There is nothing magic about the reference state, it is

merely a convention that admits a convenient physical in-

terpretation: the temperature at a near surface atmospheric

pressure after all the water in a parcel has been condensed,

so that the total water specific humidity is in the form of

condensed liquid water. The counterpart to the equivalent

potential temperature is the liquid-water potential temper-

ature,

θ` = T

(
π

p

)R`
c`

Ω` exp

(
−Lvqw
c`T

)
, (4.33)

which is the temperature an air parcel would have if were

reversibly brought to the {π, qt, 0} reference state, whose

specific gas constant is R` = qdRd + qtRv.

The entropy temperatures, θe and θ` are conserved under

reversible transformations and can serve as thermodynamic

coordinates: θe carries the strong imprint of moisture, and θ`
is more strongly influenced by temperature perturbations.

4.1.8 Static Energies

Temperatures related to the potential temperatures emerge

as conserved quantities for adiabatic transformations in a

hydrostatic atmosphere. Because atmospheric pressures are

very nearly what they would be assuming a hydrostatic bal-

ance, increasingly so at larger scales, it is reasonable to sub-

stitute −dφ, where φ = gz is the gravitational potential, for

αdp in the enthalpy form of the first law. With this substi-

tution, and assuming an adiabatic transformation yields

0 = d (h + φ) , (4.34)

i.e., h = h+φ, the potential enthalpy, is conserved for adia-

batic transformations. The quantity h, which we called the

potential enthalpy (in analogy to the potential temperature)

is usually called the static energy, because it measures the

sum of the heat content (or enthalpy) and the potential en-

ergy of the air parcel, and hence is the energy of a parcel in

the absence of kinetic energy. For purely vapor liquid sys-

tems, he or h` from Eqs. (4.13) and (4.14) can be used to

describe the enthalpy, from which follows that

he = ceT + Lvqv + φ, (4.35)

and

h` = c`T − Lvqw + φ, (4.36)

are conserved. These quantities are called the moist and

liquid-water static energies respectively. In the absence of
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water both become identical to the dry static energy,

s = cp,dT + gz. (4.37)

The names arise historically, a more informative terminol-

ogy would be to refer to the condensation and evaporation

potential temperatures (Eqs. (4.30) and (4.33)) and the con-

densation and evaporation potential enthalpies (Eqs. (4.35)

and (4.36)) respectively.

4.1.9 Further Thoughts on Thermodynamic

Variables

Many of the nuances of that moisture brings to thermody-

namic descriptions can be neglected when considering small

perturbations about a given state. For instance, consider

that the liquid water and equivalent enthalpy both describe

the enthalpy of a moist liquid-vapor system, hence in general

we expect

he = h`. (4.38)

This equality implies that (ce − c`)T = qtLv. This is of

course the case1 because c` − cw = qt(cv − cw) and Kir-

choff’s relation for the enthalpy of vaporization demands

(cv − cw)dT = dLv. However, if as commonly done one

assumes that c` ≈ cp,d = cp and ce ≈ cp,d = cp large differ-

ences between h` and he become apparent. These differences

are however differences only in the absolute sense, as defin-

ing

he ≈ cpT + Lvqv + gz (4.39)

h` ≈ cpT − Lvq` + gz (4.40)

implies that small perturbations (denoted by primes) are

proportional, i.e., h′e ≈ h′`, where the approximation is ex-

act in the case of saturated perturbations, q′v = q′s = −q′`,
even if h` and he approximated in this fashion differ from one

another markedly (proportional to qtLv.) For this reason it

is customary to define many of the moist thermodynamic

variables in an approximate form appropriate to the consid-

eration of small fluctuations, i.e., the above forms for the

moist enthalpy is used to define the static energies, and

θe ≈ θ exp

(
qvLv

cpT

)
and θ` ≈ θ exp

(
−qwLv

cpT

)
. (4.41)

Such an approach renders many of the distinctions made

above, between ce or c` and cp,v or cw mute, their chief pur-

pose being one of pedagogical precision. Many experienced

practitioners develop an intuition for which approximations

are appropriate, however to the unfamiliar student of the

subject the approach to the topic can appear unrigorous

and confusing.

1 Here it is assumed that the specific heats (and hence gas
constants) are not allowed to vary with temperature. This is not
strictly true. For a perfect gas the specific heats are related to
the degrees of freedom of a molecule over which thermal energy
is equally distributed. However not all the degrees of freedom of
molecules in the atmosphere are accessible at the temperatures
found in the atmosphere, and accessibility of additional degrees of
freedom increases with temperature, given the gas “constants” a
temperature dependence which is neglected in almost all practical
applications.

The question often arises as to which thermodynamic co-

ordinates are most appropriate for a given purpose. En-

thalpy based variables are well suited to the treatment of

mixing processes, because they are so naturally linked to

the extensive variables. In contrast the potential tempera-

tures are exponential functions of entropy, namely,

s` = scnst + ln θ`, (4.42)

which suggests that the log of the potential temperatures

might be a better coordinate for treating, for instance, mix-

ing processes as compared to the potential temperature itself

But because in almost all situations departures from the hy-

drostatic pressure are of little importance to the dynamics,

it is simpler to work directly with the static energies. To the

extent approximations such as those given by Eq. (4.40) and

(4.39) are acceptable it is also straightforward to derive the

enthalpy temperatures,

Te ≡ T +

(
Lvqv + gz

cp,d

)
≈ θ +

(
Lvqv
cp,d

)
(4.43)

T` ≡ T −
(
Lvq` + gz

cp,d

)
≈ θ −

(
Lvqw
cp,d

)
(4.44)

for those that are more comfortable working with tempera-

tures, as compared to enthalpies or entropies.

As for deciding whether the condensed, he, or evaporated

h`, reference state representation is more or less favorable,

traditionally systems in which liquid water is explicitly ac-

counted for favor h` because it reduces to the dry static en-

ergy in the absence of condensate. Systems in which water

vapor is the other thermodynamic coordinate on the other

hand tend to favor he representations, in part because he is,

given the approximations in Eq. (4.44) conserved even for

open systems in which precipitation converges or diverges

from a parcel of air. In the more exact representations of he
precipitation affects the value of the total water, and hence

ce, and thus acts as an enthalpy source. Nonetheless, θe or

he are widely used to describe large-scale systems, particu-

larly in sofar as they involve precipitation, and θ` or h` find

favor in studies of non-precipitating boundary layer clouds.

4.2 Thermodynamic Diagrams

Thermodynamic diagrams can be used to represent the state

of a system, as well as thermodynamic processes. They can

convey a wide range of information to the trained eye. This

information can be critical in determining the subsequent

evolution of the atmosphere and is routinely used by weather

forecasters to evaluate the likelihood of different events,

ranging from fog formation to the development of vigorous

deep convective overturning.

Many of these diagrams predate the widespread use of

digital computers, and are motivated by the difficulty asso-

ciated with directly computing various quantities, but even

today the diagrams can be useful for visualizing important

aspects of the systems state. Hence they continue to be used

through the present day. The most common thermodynamic
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Figure 4.2 Thermodynamic coordinates for: (a) tephigram; (b)

emagram; (c) skew-emagram (ln P Skew-T ).

diagram is the the Skew-T diagram, and its cousin the Tephi-

gram. Other diagrams you might have heard of include the

Clapeyron, the Emagram or Neuhoff, and the Stüve diagram

(e.g., Fig. 4.2). For the study of moist process it is often use-

ful to represent the plane in terms of moist coordinates, such

as θe and qt, for instance as is done in the Paluch diagram.

From the perspective of their thermodynamic coordinates,

the Skew-T and the Emagram are identical, they only differ

in that the coordinate axes are not orthogonal in the lat-

ter. Because isotherms will be parallel to the ln p axis and

isobars will be parallel to the temperature axis, changing

the orientation of the former leads to a greater distinction

between isotherms and adiabats. On the Skew-T they are

almost perpendicular. In both, ln p is used as a thermody-

namic coordinate (as opposed to p) because the height of an

isothermal atmosphere is proportional to ln p rather than

p. As a result the vertical coordinate of such a diagram is

closely related to the height above the surface. The Tephi-

gram differs from the Emagrams in that pressure is not a

coordinate axis. However for the special case of a dry adiabat

the first law dictates that

ln θ − lnT = −Rd

cp
ln p+ const. (4.45)

Thus associating the y-axis with ln θ and the x-axis with T

isobars satisfy y = lnx + C. In the range of practical in-

terest the curvature in these lines ends up being small, so

that if the diagram is appropriately rotated isobars become

approximately horizontal. Thus on a practical level Tephi-

grams and Skew-T s are very similar, the chief difference

being that isobars are curved on the former and adiabats

are slightly curved on the latter.

Isobars on a Tephigram and isentropes on a Skew-T are

examples of fundamental lines. That is they are not ther-

modynamic coordinates, but are isolines whose shape is de-

cided by the thermodynamic coordinates. Other examples

of fundamental lines include equisaturation curves, pseudo

adiabats, and isotherms. Note that by a coordinate trans-

form the fundamental lines of one thermodynamic diagram

can serve as the thermodynamic coordinates of another.

Although the great variety of fundamental lines that can

be added to a diagram can make it seem rather confus-

ing and busy, they aid the experienced eye in deciding at a

glance how the state of the system will change under a given

process. To illustrate this consider Fig. 4.3 which presents a

standard Skew-T diagram, with the April 16th Brownsville

Sounding superimposed.
• Pressure decreases logarithmically upwards, leading to an

almost linear relation between height and distance along

Figure 4.3 Skew-T ln p Diagram: (i) pressure decreases
logarithmically upwards, leading to an almost linear relation

between height and distance along the ordinate — as indicated
by the black numbers which denote height in meters just to the

right of the pressure values; (ii) isotherms are plotted in 10 ◦C

bands, which are shaded and converted to Fahrenheit where
they intersect the abscissa; (iii) adiabats are thin lines with

negative slope and slight curvature which intersect the

isotherms nearly perpendicularly; (iv) equisaturation curves, are
curves of constant specific humidity, qs(p, T ), are inclined to the

left of the isotherms. Reducing the pressure for a fixed

saturation pressure increases the saturation humidity qs; and (v)
saturated pseudo-adiabats are almost perpendicular to the

abscissa near the surface and curve to become parallel to dry

adiabats as p decreases. Plotted is the Brownsville Texas
Sounding for April 16, 2001

the ordinate — as indicated by the black numbers which

denote height in meters just to the right of the pressure

values.
• Isotherms are plotted in 10 ◦C bands, which are shaded

and converted to Fahrenheit where they intersect the ab-

scissa.
• Adiabats are thin lines with negative slope and slight cur-

vature which intersect the isotherms nearly perpendicu-

larly.
• Equisaturation curves, are curves of constant specific hu-

midity, qs(p, T ), are inclined to the left of the isotherms.

Reducing the pressure for a fixed saturation pressure in-

creases the saturation humidity qs.
• Saturated pseudo-adiabats are almost perpendicular to

the abscissa near the surface and curve to become par-

allel to dry adiabats as p decreases.

The relative orientation of the fundamental lines on the

Skew-T diagram are illustrated more abstractly in Fig. 4.4.

Among other things this figure illustrates slight differences

in the slope of the dry versus the moist adiabat. Both are

given by (4.33), with q` = 0. The difference arises because for

the moist system the heat capacity and specific gas constant

account for the presence of water vapor. So doing lowers the
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Figure 4.4 Relative orientation of fundamental lines. Adapted
from Fig. VI-4 of Iribarne and Godson.

ratio R/cp hence temperature decreases less rapidly with de-

creasing pressure along a moist adiabat than it does along a

dry adiabat. In general the difference between the moist and

the dry adiabats will depend on the moisture content of the

air. For this reason moist adiabats are not fundamental lines

in the plane. They could be represented as fundamental sur-

faces on three dimensional diagrams, with moisture content

marking the third dimension, but this becomes difficult to

visualize.

Another interesting way to visualize the atmosphere is in-

terms of θe and θs plotted versus height in the atmosphere.

Here we note that the saturation equivalent potential tem-

perature, given as

θs ≈ θ exp

(
Lvqs
cpT

)
(4.46)

is only a function of temperature and pressure, so in this dia-

gram, θs measures the thermal structure of the atmosphere,

and is constant following a saturated pseudo-adiabat, while

the difference between θs and θe measures the sub satura-

tion, as θe is almost always less than θrs.

4.2.1 Pseudo-Adiabats

For the same reason that moist adiabats do not constitute

fundamental lines, saturated adiabats, such as lines of con-

stant θe also are not uniquely representable in the p − T

plane. For this reason the concept of a pseudo-adiabat is of-

ten introduced. In a pseudo-adiabatic expansion the contri-

bution of condensed water to the heat capacity of the system

is neglected. This is equivalent to assuming that upon con-

densation any liquid water that forms is precipitated from

the system, thus implying an open system which is no longer

isentropic. But because differences between this and the re-

versible process underling the definition of θe are small we

can consider it as a pseudo-isentropic process, and call the

lines corresponding to it pseudo-isentropes, or pseudo adia-

bats – the latter being more common.

Pseudo-adiabats have the advantage of being repre-

sentable on the plane. Their disadvantage is that no known

closed form expression for their representation exists. The

problem arises because the equation for the second law,

Eq.(4.15), cannot be directly integrated if the specific heats,

and gas constants (which appear in the expression for h and

α respectively) can no longer be assumed to be constant.

This is the case when the total water present is assumed

to adjust to the saturation humidity, which is a function of

temperature and pressure.

A closed form for the temperature evolution with height

can be readily derived from the condition that dhe = 0.

Starting from (4.35) and noting that dhe depends on dqv,

where for a saturated system qv varies as qs and qs = f(T, p).

Thus through the constraint that dhe = 0 is is straightfor-

ward to show that

Γs ≡ −
dT

dz

∣∣∣∣
hs

=
g

cp

 1 + Lvqs
qdRdT

cp +
L2

vqs
RvcpT 2

(
qsRv

qdRd
− 1
)
 (4.47)

with

cp = qdcp,d + qvcp,v + qwcw (4.48)

Note that (4.47) differs from the dry adiabatic lapse rate

Γd ≡ g/cp,d by the ratio of cp,d to cp, the latter being an

effective isobaric specific heat that takes into account the

contribution to the enthalpy from the different constituents

of the air parcel. Thus given the temperature at any height

the temperature at other heights can be calculated by in-

tegrating Γs. The pseudo-adiabat (Γs̃) which neglects the

contributions from liquid water to the specific heats can be

similarly derived. Doing so leads to a somewhat larger lapse

rate, which makes sense because of the higher specific heat

capacity of liquid water relative to the other constituents of

the air parcel.

A straightforward calculation of the difference between

pseudo-adiabats and adiabats shows that they differ most

appreciably in the upper troposphere. This is to be expected

because T decreases with height, hence qs decreases and qw
increases correspondingly. Overall the differences in T tend

to be less than 0.5 K below 400 hPa increasing to as much

as 3-5K between 100 and 200 hPa. Because in the upper

troposphere ice processes play an increasingly important role

the lack of correspondence between Γs and Γs̃ is less of a

concern because the relevance of Γs is questionable here in

the first place.

4.2.2 Soundings

Soundings in the atmosphere are measurements of its state

as a function of altitude. Generally they are made with a

balloon which drifts with the mean wind as it rises and

measures the wind vector, temperature and relative humid-

ity along its trajectory. An example of such a sounding is

shown in Fig. 4.3. Plotted are two lines, the right-most one

denoting the temperature structure of the atmosphere, and

the leftmost one being the dew-point temperature, Td. The

dew-point temperature measures the temperature at which

air with a given moisture content would saturate, assuming

no change in air pressure. Hence it is generally lower than,

but independent of the actual temperature. The wind is plot-

ted with wind-barbs on the far-right, wherein the magnitude

of the wind is denoted by the barbs and the direction by the

orientation. Some things worth noting about the sounding

are the following:
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• The wind is primarily from the west at upper levels, and

reaches a maximum of approximately 75 knots near 200

hPa.
• Surface winds are from the east with a southerly jet at

850 hPa.
• For the most part the temperature profile fluctuates be-

tween a rate of increase bounded by Γd and Γs, tending to

the latter between 600 and 200 hPa. Exceptions include

a layer between 925 and 750 hPa in which the tempera-

ture is more isothermal than moist adiabatic, and a layer

above 200 hPa where the profile is again more isothermal.
• The minimum temperature at 200 hPa denotes the

tropopause. The warmest air is at the surface, although if

the air at 750 hPa were brought to the surface following

a dry adiabat, it would be very much warmer, nearly 40
◦C.
• If air at the surface could be mechanically forced (along

a saturated adiabat) to an altitude of approximately 650

hPa it would begin to be warmer than its environment.

Its subsequent trajectory is denoted by the dashed line.
• The moisture structure of the atmosphere is varied. A

moist layer can be found at the surface but the warm

air just above this is very dry, as is the air in the upper

troposphere.

We will return to some of these features when in the context

of the discussion of atmospheric stability below

4.3 Moist convective instability

4.3.1 Buoyancy Reversal

Another interesting phenomenon, thought to have broad

consequences in the atmosphere is the idea of buoyancy re-

versal. Here the isobaric mixing of two systems can, through

non-linearities in the equation of state, lead to a mixture

whose temperature is not bounded by the temperatures of

the constituent air masses. To illustrate this possibility we

first consider the somewhat simpler situation whereby two

air masses can mix to produce a mixed airmass whose tem-

perature is less then either constituent. Physically one can

imagine this happening when a saturated airmass (cloud)

mixes with a subsaturated (dry) airmass resulting in evap-

orative cooling which cools the mixture. Clearly the maxi-

mum evaporative potential is realized when the mixed parcel

is just saturated, implying that all of the liquid water in the

cloudy parcel has been evaporated.

Once again, we take as our starting point the two parcels

in Fig. ??. The two states are given by (h1, qt1) and (h2, qt2)

but chosen such that qt,1 > qs(T1, p), qt,2 < qs(T2, p), and

T2 > T1. In words parcel 2 is relatively cool and saturated.

Parcel 1 is subsaturated and relatively warm. The moist

enthalpy of the system before and after mixing isobarically

is the same, that is

he,1 + χ∆he = he. (4.49)

which if the mixture remains saturated (and we neglect com-

positional effects on cp and take L to be independent of

Figure 4.5 Convective plumes developing as a result of the

buoyancy reversal instability

temperature), can be expanded as follows

cpT1 + Lvqs(T1, p) + χ∆h = cpT + Lvqs(T, p). (4.50)

For small temperature changes, which we denote δT = T −
T1,

qs(T, p)− qs(T1, p) '
∂qs
∂T

∣∣∣∣
T1

δT =
qsLv

RvT 2
1

(
p

p− ps(T1)

)
δT.

(4.51)

Substituting this expression for δqs into the previous ex-

pression yield a relationship between the perturbation to

the temperature under mixing to the differences in the en-

thalpies of the two states:(
cp +

L2
vqs(T1, p)

RvT 2
1

p

p− ps(T1)

)
δT = χ∆he. (4.52)

Hence temperature can reverse itself, T < T1 < T2 if

∆h < 0. The condition for the latter, given that ∆T > 0,

is approximately that −∆q > (cp/Lv)∆T. In words the

warmer parcel must be sufficiently subsaturated to offset

its temperature difference.

Note the effective specific heat, given by the prefactor to

δT on the lhs of the above, is similar to that which arises

due to the phase change effect in the derivation of the moist

adiabat given by Eq. 4.47, the difference being in this case

the effects of p on qs, which show up in the numerator of

(4.47), play role. Not surprisingly this condition ∆he < 0

can also be expressed as the condition on the moist static

energy or the equivalent potential, namely that ∆h < 0 or

∆θe < 0

The condition (4.52) for temperature reversal can be read-

ily extended to the case of buoyancy reversal by examining

under what conditions δTρ < 0. In deriving a condition on

this, the additional complication comes from the fact that Tρ
depends on both temperature and moisture. Similarly more

exact expressions can be found by restoring the composi-

tional dependencies on the specific heats, and accounting

for the temperature dependence of Lv given by Kirchoff’s

relation.

4.3.2 Conditional Instability

Except for the few tens of meters nearest the ground during

a warm day, the oscillation frequency of gravity waves in an
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Figure 4.6 Different regions of atmospheric stability, as
delineated by the fundamental lines on a Skew-T diagram.

Adapted from Iribarne and Godson.

unsaturated atmosphere, i.e., the Brunt-Väisällä frequency

N2 =
g

θ

dθ

dz
. (4.53)

is almost never negative. This implies that unsaturated per-

turbations to the atmosphere oscillate or are damped, rather

than grow. This is evident in Fig. 4.3 where the environ-

mental temperatures decrease everywhere less rapidly than

does the dry adiabat. Yet the overturning of the atmospheric

column manifest in many severe storms must be an expres-

sion of some form of instability. Although unsaturated air

displacements are rarely unstable, saturated displacements

may be unstable. Their oscillation frequency can be mea-

sured by the difference between the environmental lapse rate

as compared to the saturated lapse, rate Γs, and help define

a saturated Brunt-Väisällä frequency

N2
s =

g

θ

dθe
dz

, (4.54)

which depends on temperature. Because N2
s < 0 implies

instability only under the condition of saturated perturba-

tions, dθe/dz measures the conditional stability of the at-

mosphere, as illustrated schematically in Fig. 4.6.

The ability of the atmosphere to develop and sustain a

thermal structure that is conditionally unstable allows for

a finite amplitude instability not found in dry atmospheres.

Although the atmosphere might be stable to infinitesimal

perturbations, larger (finite amplitude) perturbations are

potentially unstable. Consider the sounding in Fig. 4.3. Air

very near the surface is nearly saturated. If it is lifted adi-

abatically its temperature will decrease along a dry adiabat

and its dew-point will increase along a line of constant satu-

ration mixing ratio until they meet, at approximately 1000

hPa. This level is called the lifting condensation level or

LCL.

Further displacements of the parcel will be along a satu-

rated adiabat. Here we see that such displacements are sta-

ble through a layer of 350 hPa. However, if somehow enough

work were done on a surface parcel, to lift it to approx-

imately 650 hPa, further displacements would result in a

parcel which is warmer than its environment. At this point,

instead of having to do work on the environment to lift the

parcel, the environment will do work on the parcel, and the

parcel will begin to accelerate upwards. At this point, which

we refer to as the level of free convection (or LFC), we speak

of the parcel being unstable.

In the process just described surface parcels of air were

stable to small perturbations, but not with respect to deeper

perturbations. In the above case the atmosphere is unstable

to perturbations which mechanically, and adiabatically lift

parcels to pressures less than 650 hPa. Note however that at

the level of free convection the atmosphere is not absolutely

unstable, i.e., unstable to perturbations to the air at this

level. This is because the air at 650 hPa is far from satura-

tion, as it is considerably drier than air that is adiabatically

lifted from the surface. Thus, unlike a dry atmosphere in

which any finite amplitude instability implies an infinitesi-

mal instability, a moist atmosphere can be truly stable to

infinitesimal perturbations, but unstable to finite amplitude

ones.

Here it can be noted that the condition for buoyancy re-

versal, is the same as for conditional instability, although

the former is applied to a smoothly varying field and im-

plies upward convective currents, the latter is developed for

a contact discontinuity in the field, as one might find at

the cloud-top free-atmosphere interface of an existing cloud,

and implies downward convective currents. For this reason

the buoyancy reversal instability was originally called con-

ditional instability (of the first kind) upside down.

4.3.3 CAPE

To measure the amount of work the atmosphere is capable

of doing on a parcel lifted to its level of free convection the

concept of convective available potential energy (CAPE) is

introduced (and denoted by A) :

A =

∫ zn

zf

b dz, (4.55)

where b is the buoyancy as defined in Eq. (4.8), and the lim-

its of integration are zf , the level of free convection (LFC)

and zn, the level of neutral buoyancy (LNB). This is the

level at which the parcel lifted along the specified adiabat,

or pseudo-adiabat, ceases to be buoyant relative to the en-

vironment. Most of the time zn is near the tropopause.

Substituting (4.8) into (4.55) and using the hydrostatic

equation to replace the integration in height by an integra-

tion in pressure yields

A =

∫ pf

pn

RdT
′
ρ d(ln p). (4.56)

Thus on the Skew-T diagram (e.g., Fig. 4.3) A is propor-

tional to the area between the environmental temperature

and the dashed line.

CAPE as defined by (4.55) depends sensitively on the par-

cel being lifted and the manner in which it is lifted. Small

differences in the initial state of a parcel can lead to large dif-

ferences in A. For instance, the sounding plotted in Fig. 4.3

is taken from just before sunrise. During the day the surface

air temperature will increase. A for a parcel with the identi-

cal moisture content, but which is 5 ◦C warmer, A increases

more than 50 %, from 1 400 J kg−1 to 2 350 J kg−1.

Because A describes the work the atmosphere can do on

a parcel, or alternatively the potential energy available to a

convecting parcel, it can be related to the maximum kinetic
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energy. That is it bounds the amount of kinetic energy a

parcel could have, thus defining a velocity scale:

wmax =
√

2A (4.57)

which is another measure of the intensity of convection.

4.3.3.1 Other CAPE-like Measures

CAPE is the most common measure of the potential in-

stability of the atmospheric column. While it constitutes a

necessary condition for instability, many other factors can

come into play. The amount of work that must be invested

to access the CAPE of a sounding is highly variable. In some

cases one does not have to do a large amount of work on a

parcel before the atmosphere starts returning the favor. To

measure this aspect of the atmosphere another parameter,

called Convective Inhibition (or CIN) is sometimes intro-

duced. It is the analog to CAPE, but measures the amount

of work that must be done to lift a parcel from some refer-

ence level, p∗, to its level of free convection:

I = −
∫ pf

p∗

RdT
′
ρ d(ln p). (4.58)

Thus the potential instability of the atmosphere depends

not on CAPE alone, but also on other factors such as CIN.

Figure 4.7 Illustration of different types of CAPE using the
Brownsville sounding of Fig. 4.3

Another CAPE like measure of the atmosphere is called

down-draft CAPE, or D. It is illustrated in reference to reg-

ular CAPE in Fig. 4.7. D measures the stability of satu-

rated downward displacements of air first brought to its

wet-bulb temperature by evaporation of falling rain. The

wet-bulb temperature (sometimes denoted Tw) is bounded

by the dew-point temperature and the actual temperature.

It is the temperature that one gets by isobarically bring-

ing air to saturation through evaporation. Because water is

evaporated into the air, the air both cools and moistens in-

creasing its mixing ratio while decreasing its temperature.

Hence,

D(pi) =

∫ psfc

pevap

RdT
′
ρ (. ln p), (4.59)

where here Tρ(pevap) = Tw and T ′ρ is the difference be-

tween the virtual temperature of a parcel at some level peval

brought to saturation by evaporating water into it and the

environmental value of Tρ. Physically D measures the sta-

bility of air to evaporation of rain. In environments with

large values of D vigorous down-drafts can be formed by

evaporating water (from precipitation) into a dry ambient

environment. The analogy to buoyancy reversal, whereby

negatively buoyant parcels can be created through isobaric

mixing, should be readily apparent.

4.3.3.2 Caveats on CAPE

As alluded to above the actual CAPE of a given atmospheric

sounding is not a number without ambiguity. This ambigu-

ity stems mostly from the varied definitions associated with

it. Above CAPE has been defined to be the positive area

on the thermodynamic diagram. Others define it to be the

net positive area associated with a parcel lifted dry adia-

batically from the surface to the level of neutral buoyancy.

Others compute the CAPE associated with a parcel char-

acterized by the mean properties of the lower 10-50 hPa

of the atmosphere. Yet others adjust the surface properties

of the sounding to reflect what they anticipate conditions

will be like at the height of the day. Because it measures a

conditional process, there is no way to define CAPE unam-

biguously, as how much energy is available to a parcel raised

to its level of free condition depends very much on the parcel

being lifted.

The thermodynamic processes which govern the evolution

of the state of the parcel above the lifting condensation

level also play a large role in determining CAPE. For in-

stance parcels in which ice forms will have different values

of CAPE than parcels assumed to follow a pseudo-adiabat,

likewise rising parcels usually mix with their environment,

intact the more unstable they are the more they are likely

to mix. Thus CAPE can be seen as a function of the state of

a parcel, the environment, and the specified type of thermo-

dynamic process for the rising parcel. These ambiguities do

not diminish the value of a measure like CAPE, but they do

indicate that if it is to be used quantitatively the particular

use of the concept must be made precise.

4.3.4 Slice Method

The ability of CAPE to characterize the potential energy

available to convection is based on a number of idealiza-

tions. These include: (i) that the parcels being lifted follow

the specified thermodynamic process; (ii) that the parcels

being lifted are characteristic of the air that actually fuels

any convection that develops; (iii) that the response of the

environment can be neglected. More refined measures of con-

vective instability attempt to address one or more of these

limitations. Most notable among these is the slice method

introduced by Bjerknes. In some sense it can be viewed as a

theory for fully developed convection.

In the slice method we evaluate the situation in a con-

vecting atmosphere at some reference height z∗ above cloud

base. It is envisioned that in some sufficiently large area, the

fraction of the convecting region is a robust quantity which

can be denoted by σc. If we integrate the vertical velocity
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Figure 4.8 Situation modeled by the slice method. Here the

depicted convection is energetically inhibited because the
response of the environment would stabilize the atmosphere.

over the convecting region we can define a mean convective

velocity wc. Mass continuity across the reference level allows

one to express the mean subsiding velocity of the environ-

ment w̃ in terms of (σc, wc) :

σcwc + (1− σc)w = 0, (4.60)

where symbols without a subscript denote environmental

values, so here w is the mean vertical velocity of the envi-

ronment.

Assuming that the air rising in the convecting region is

rising along a saturated adiabat, while the subsiding air fol-

lows a dry adiabat, the temperature difference between the

convecting region and the environment at the reference level

can be expressed as follows:

Tc(z∗)− T (z∗) ≈ T01 − Γs∆z1 − (T02 − Γd∆z2) , (4.61)

where ∆z2 < 0 < ∆z1,

T01 = T (z∗) + ∆z1Γ (4.62)

T02 = T (z∗) + ∆z2Γ, (4.63)

and Γ = −dT/dz the environmental lapse rate. Note that the

above implies that our model is most appropriate if we as-

sociate ∆z1 with the distance above cloud base. The above

relations are illustrated in schematically Fig. ??, they de-

scribe the temperature in the convecting region as the tem-

perature that the environmental air a distance ∆z1 below

z∗ would have it if were lifted to z∗ along a moist adia-

bat, while the temperature of the environment at z∗ is that

which environmental air a distance −∆z2 above the con-

vecting region would have were it brought dry adiabatically

to z∗. The distances ∆z1 and ∆z2 are given by wc∆t and

w̃∆t respectively.

Substituting from above allows us to express the temper-

ature difference in terms of σc, wc and Γ,

Tc − T̃
∆t

= wc(Γ− Γs)− w̃(Γ− Γd) (4.64)

= wc

[
Γ− Γs +

σc
1− σc

(Γ− Γd)
]
. (4.65)

Thus the criterion for convective instability, Tc − T̃ > 0 is

equivalent to requiring that

Γ > Γs + σc(Γd − Γs) > Γs. (4.66)

This requirement is more severe than that given by the par-

cel method. The physical difference being that the compen-

sating downward motion stabilizes the environment.

A further implication of the above result is that moist

convection is most unstable if its fractional area is smallest.

Physically we might expect this, as for a given wc vanishing

σc implies that the compensating environmental motion is

minimized and hence the environment is stabilized the least.

Mathematically we can see this by considering the neutral

limit of (4.65):

Γ− Γs +
σc

1− σc
(Γd − Γ) = 0. (4.67)

which can be solved for σc :

σc ≤
Γ− Γs

Γd − Γs
. (4.68)

4.4 Fluid Dynamical Systems

From the perspective of a rotating coordinate system in a

gravitational field the governing equations of a two compo-

nent fluid for which viscous dissipation is not modified by

compressibility effects are:

D

Dt
ui = −gδi3 −

1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

, (4.69)

D

Dt
ρ = −ρ

∂uj
∂xj

+ ρ̇c (4.70)

D

Dt
s =

q

T
(4.71)

D

Dt
qt = mt. (4.72)

Tensor notation is employed so that ui with i ∈ {1, 2, 3} is

the velocity vector referred to a Cartesian coordinate sys-

tem xi ∈ {x, y, z} such that x3 ≡ z is aligned with the

gravitational acceleration vector. Throughout we use Ein-

stein’s summation convention with δij Kroenecker’s delta.

The derivative
D

Dt
≡ ∂

∂t
+ uj

∂

∂xj
,

is the convective derivative, it denotes a change in the fluid

property following the flow. The kinematic viscosity is de-

noted by ν, the thermal diffusivity by κ, f is the Coriolis

parameter and S is an entropy source, and Mt is a water

mass source. for instance radiation or precipitin, the remain-

ing symbols retain their conventional meanings.

Equations (4.69)-(4.72) follow directly from the laws

of classical mechanics and thermodynamics, except for

Eq. (4.72), which is formed by decomposing the mass con-

tinuity equation into several equations, one for each con-

stituent, and noting that ρt = qtρ. Subtracting the equa-

tion for qtDρ/Dt from the equation for D(ρqt)/Dt yields

Eq. (4.72). For an equilibrium system the water mass is par-

titioned among the phases so as to maintain saturation with

respect to ice, or water. For non-equilibrium phases of water,

for instance precipitation, the system must be augmented

to incorporate additional mass conservation equations, ex-

change rates between the phases, and associated entropy
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sources. Because s = s(p, T, qt) Eqs. (4.69)-(4.72), form

a closed system given a specification of the source terms,

(S,Mt), and external parameters (g, ν), and an equation of

state.

4.4.1 Boussinesq equations

It turns out that the above set of equations are rarely used

as a basis for the investigation of fluid processes in the me-

teorology or oceanography. Their chief shortcoming is that

they include physical processes, such as sound waves, whose

timescales are much shorter than the timescales of most pro-

cesses of interest. Retaining these modes of variability main-

tains needless complexity and hinders theoretical studies.

Acoustic modes can be limited by introducing a constraint

on compressibility. A number of approximate equation sets,

based on such a constraint, have been proposed and are used.

All preserve what are thought to be the essential aspects of

the fluid dynamics, while filtering sound waves. These sim-

plified systems can be grouped into three categories based

on what continuity equation they imply. Here the procedure

is illustrated by sketching the derivation for the Boussinesq

equations for a moist atmospheric flow. These equations are

asymptotically exact in the limit of small fluctuations in

thermodynamic quantities. For a flow incorporating phase

changes it proves useful to work with (p, θ`, qt) as the ther-

modynamic coordinates. Expanding these coordinates in a

base state and fluctuating quantities as follows

p = p0 + p(z) + p′(x, y, z, t) (4.73)

ρ = ρ0 + ρ′(x, y, z, t) (4.74)

θ` = θ0 + θ′`(x, y, z, t) (4.75)

qt = q′t(x, y, z, t), (4.76)

where the base state for qt is assumed to be zero, i.e., fluctu-

ations in qt are not assumed to be small relative to the base

state, and p0 is taken to be 100 000 hPa Thus for consistency

θ`,0 = θ0. In the limit of small perturbations

ρ(p, Tρ) ≈ ρ0 +

(
∂ρ

∂p

)
0

p′ +

(
∂ρ

∂Tρ

)
0

T ′ρ (4.77)

so that

ρ′

ρ0
=
p′

p0
−

T ′ρ
Tρ,0

(4.78)

The principle assumptions of the Boussinesq system is

that density perturbations are, relative to the mean state,

small, such that

ερ ≡
ρ′

ρ0
� 1. (4.79)

and that pressure perturbations are much smaller than tem-

perature perturbations, so that

ρ′

ρ0
= −

T ′ρ
Tρ,0

, (4.80)

as was asserted in the discussion of the Equation of state.

This is a good assumption because the pressure is an integral

quantity, in that through the hydrostatic balance it depends

on the integral of the temperature field through the atmo-

sphere. So local temperature perturbations are expected to

be much larger than pressure perturbations.

Consider the case when the flow is governed by a single

velocity-scale U and length-scale H (which imply a time-

scale H/U) determined by the inertial motions. In this case

the continuity equation (4.70) can be non-dimensionalized

by the time, velocity and distance, scales (with non-

dimensional quantites denoted by tilde),

(t̃, ũi, x̃i) where t→ Ht̃/U, ui =→ ũiU, xi = Hx̃i,

such that

D

Dt̃
(ερ) + (1 + ερ)

∂ũi
∂x̃i

= 0. (4.81)

By (4.79) the leading order balance is simply non-

divergence, which in terms of dimensional variables be-

comes:

ρ0
∂ui
∂xi

= 0. (4.82)

To analyze the balances in the momentum equation we

multiply (4.69) by ρ, and follow a similar procedure, whereby

we find that

(1 + ερ)
Dũi
Dt̃

=− 1

ρ0U2

∂(p+ p′)
∂x̃i

− (1 + ερ)
H

U

[
gδi3
U

]
+

1

R

[
∂2ũi
∂x̃j∂x̃j

]
, (4.83)

where R = UH/ν is the Reynolds number. For the ba-

sic state to be static requires that dp/dz = −ρ0g. Sub-

tracting this balance from above, substituting from ερ from

Eqs. (4.80), and returning the equations to their dimensional

form yields the asymptotically valid form of the momentum

equation,

Dui
Dt

= − 1

ρ0

∂p′

∂xi
+

T ′ρ
Tρ,0

gδi3 + ν0
∂2ui
∂xj∂xj

. (4.84)

The form of this equation makes clear the manner in which

fluctuations in the density temperature, Tρ, drive density

fluctuations. The term (T ′ρ/Tρ,0)g has units of acceleration,

it is a reduced gravity and is called the buoyancy term –

sometimes denoted by b.

The thermodynamic equation, (4.71), when written in

terms of θ` completes the description of the system, yielding

the moist Boussinesq equations:

D

Dt
ui = −bδi3 −

1

ρ0

∂p′

∂xi
+ ν

∂2ui
∂xj∂xj

, (4.85)

D

Dt
θ` =

θ0
T
S (4.86)

D

Dt
qt =Mt, (4.87)

subject to the constrain that the flow is non-divergent, and

supplemented by the equation of state, which is specified

through the buoyancy function, b(θ`, qt).

4.4.2 Primitive Equations

Here I plan to simply state the equations and the assump-

tions that lead to them, pointing out two things: (i) working
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in pressure coordinates gives a non-divergent constraint; (ii)

that the static energies arise as natural coordinates.

4.4.3 Reynolds Averaged Equations

Here I plan to introduce the closeure problem, using the

primitive equations.

4.4.4 Similarity Approaches

Not sure if I will say anything here, it depends on other

chapters. But I have material that establishes similarity as

non-dimensional equivalence, and gives some nice examples,

i.e., the period of a pendulum, as an introduction to param-

eterization.

4.5 Summary of Symbols

Exercises

1. Prove that Lv/T = sv − sw in the case of a saturated

system.

2. Derive γ` and Ω`, which appear in Eq. (??) which defines

the liquid-water potential temperature.

3. Show that

N2
s ≈

g

θ

dθe
dz
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Table 4.2. Summary of symbols

Quantity Symbol Reference

Relative Humidity H
Temperature T

Density Tρ
Air pressure p

Partial pressure of dry air pd
Vapor pressure pv
Saturation vapor pressure ps
Specific humidity (vapor) qv
Specific humidity (liquid condensate) qw
Specific humidity (sold/ice condensate) qi
Total water specific humidity qt
Total condensate specific humidity qc
Potential Temperature θ

Equivalent Potential Temperature θe (4.30)

Liquid-water Potential Temperature θ` (??

Saturation Equivalent Potential Temperature θs
Liquid-water Potential Density Temperature θρ,`
Dry static energy s

x Moist static energy he (4.30)

Liquid-water static energy h` (??

Saturation Equivalent static energy hs
Liquid-water density static energy hρ,`
Reference pressure π = 105 Pa

Density Tρ
Entropy s
Enthalpy h
Gibbs Free Energy g
Heating q
Brunt-Väisällä frequency N2

Mixing fraction χ

CAPE A
Convective Inhibition I
Downdraft CAPE D
Specific gas constant R

Isobaric specific heat cp
Velocity vector ui = {u, v, w}
Temperature lapee rate Γ

Convective updraft area σc
Reynolds Number R

Any notes... Subscript notation?


