Evalvation of clouds in large-
scale models

What? Why? How?
Part 2

Christian Jakob & Jean-Louis Dufresne

What is the truth?

* Mode}l} evaluation usvally needs an estimate of the
“Truth’..
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Approaches to model evaluation
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Weather vs Climate
model evalvation

* Recall: One main role of evaluation -> fit for purpose
test

*  Weather Prediction: This is relatively easy as the
predicted weather will oceur in a few days and we
can compare the model forecast to observations at
that point.

* Climate: It will be decades before we can judge the
success of our projections. We can only evalvate
model performance for current and past climates.

Weather vs Climate
model evalvation

* A close connection of success in

simulating aspects of current R
climate to model behaviour in z e,
future projections has not been 2 e "' .
established! g L
§o 4" ° l’. P
* Therefore, evalvation of g S
current climate is - at best - a g e
necessary condition for model 2 Tt
quality. worl_, S ,
2 3 4 5
*  This also implies that our e o e
reliance on understanding is of et o, i ol e
wuch greater significance for
climate than weather wmodels.
Klocke et al., JCL, 2012
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Running climate models

]
in weather mode
* Intheory we can run climate At ES
models initialized - in practice = Jf*ds
this may be hard. :

*  The main reason for doing so is
t0 constrain the circulation
closer to the truth, so that
error in clouds/precipitation
can wore easily be assigned to
parametrization issues.

*  Thereis an international
project doing this - Transpose

AW ey T T

Xieetal., JCL, 2013

Evalvating clovds and
precipitation

... i8 a tricky business!

What are we interested
in?

* Radiative effects of clovds

* Heating in clouds and precipitation and its
effects in interactions with circulations

* Petermined by cloud properties, such as
cloud fraction, cloud water/ice content,
cloud particle characteristics
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Some issues specific to
cloud evalvation

* (louds and precipitation are
difficult to observe (see
observations lectures).

* Clouds and precipitation in
wmodels are represented by
parawmetrization through a few
variables, such as cloud fraction,
cloud water and ice content,
rainfall rate (see model lectures).

* This leads to many potential
issues in comparing the two.

Two approaches to
reconciliation

Derive model variables from

observed quantities
/ Retrievals

Model clovd FIFSSP=$ Observed cloud

usually fraction, water and EEESWRS " usually a measurement of
ice < radiation

Simulate observed quantities
from the model fields
Instrument simulators

Retrieval example

Observations Models

Liquid Water Path (g/m?)

Jiang et al., J6R 2012
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Instrument simulators

* Basic idea:

* [Perive observed quantities from model
fields

* These include radiances, radar
reflectivity, depolarization ratio etc.

* Two key steps:
* Match spatial scales

+ Matceh the observable & 6
\{"Q

The ISCOP simulator

ISCCP data in CTP-t diagrams
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The ISCCP simvulator

The ISCCP P1 data set provides joint histograms of the frequency of occurrence of clouds with a certain cloud top-
pressure and optical thickness in grid boxes of ca. 280x28 0kw. These histograms have a strong relationship to
cloud types (e.q., Rossow and Schiffer, 1999). The example below shows the mean histogram for 1999-2000
averaged over an area in the Western Pacific (130-170 E, 10 N-10 S).

TCC=0.66
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The ISCCP simulator

Step 1: Scale matching

cloud fraction

Klein and Jakob, MWR, 1999

© *  Model cloud

© fraction profile
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The ISCOP simulator

Step 2: Radiative adjustment of cloud top

§ 200 physical cloud top
< - emissivity adjusted cloud top coustacion
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* Calculate 11 pwm radiance for each sub-column

*  Miwic IPCC procedure to find cloud top by assuming single layer
cloud woving it vertically until the radiances match.

Klein and Jakob, MWR, 1999

Pressure (Pa)

A radar simulator

QuickBeam

Fic. 4. Example of simulated midlatitude system in the Met Office
global forecast model. The upper panel is the North Atlantic analysis
chart at 1800 UTC on 7 July 2006. The red line shows the CloudSat
track, from A to B. The middle panel shows the radar reflectivity (in
dBZ) observed by CloudSat. The lower panel is the simulated reflectiv-
ity from the model outputs. Isotherms (°C) are contoured, the solid
line denoting the freezing level.

Haynes et al., BAMS, 2007

Calculations Primary Outputs
Radar reflectivity
profile
Mie-lookup table i
profile
+ Gaseous attenuation
profile
Gaseous absorption
calculations
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]
A radar simulator
HadGEM1 MMI‘= 4kml L26 C!oudSlal
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Bodas-Salcedo et al., BAMS, 2011 \

The COSP simulator

*  Simulators can be built for other instruments/collection of
instruments.

* The Cloud Feedback Model Intercomparison Project (CFMIP)
Observation Simulator Package combines a number of thew in one

software package.
Subgrid Cloud Overlap Profile Sampler Cloudsat
CALIPSO
g::l::x subgri d Isccp N
profiles profiles MISR
MODIS
RTTOV

L.
i€ 5.6
Bodas-Salcedo et al., BAMS, 2011 \,{"Q

SP simulator

GA3.0
1sc

*  Test of two model versions
a\j::r the Southern Ocean in

*  Model lacks wid-level clouds
(1SCCP MISR, MOPIS)

*  CALIPSO -> [ack of mid-level
clouds with large scattering
ratio (liquid).

*  Lack of bi-modality in
CloudSat simulated
histograms -> too much
drizzle

- r
2@ 5.6
™ Bodas-Saleedo et al., JCL, 2012 \:ﬁ‘@
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Simvulator limitations

* (an be a misnowmer to begin with.

* (an obscure model error (e.qg., ISCCP high
over low cloud)

* (Qbservational artifacts might be missing.

* Ancillary data might not be the same (e.g.,
surface albedo).

* [ifferent assumptions (e.g., partly clovdy
pixels in the real world) skew the results

Basic weather and
climate model
evalvation

Frequently used data sets

*  Sowme commonly used data sets are:
% Reanalyses by NCEP ECMWF (ERA40, ERA-1), NASA (MERRA) and
IMA

*  Radiation: CERES (Clouds And The Earths Radiant Energy System)
and previously ERBE (Earth Radiation Budget Experiment)

*  Precipitation: GPCP (Global Precipitation Climatology Project), CMAP
(Climate Prediction Centre Merged Analysis of Precipitation),
TRMM (Tropical Rainfall Measurement Mission), CloudSat,
CMORPH (Climate Prediction Center Morphing technique)

*  Cloud properties: ISCCP (International Satellite Cloud Climatology
Project), MOPIS (Moderate Resolution Imaging Spectroradiometer)
cloud products, CloudSat (Cloud radar), CALIPSO (Lidar, especially
60CCP - GCM-oriented CALIPSO Cloud Product)
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(a) CloudSat (3X) - mean=0.33

W E  The
drizzle”
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(b) ECMWF incidence - mean=0.62 p ro b I e m
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frequency

Liquid and lce water path

CMIP3 and CMIP5 Model Output compared with A-Train Observations
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*  Wide range of simulated IWP and LWP, especially IWP
*  Some moderate improvement in newer models

Jiang et al., J6GR 2012

Vertical cloud strueture

CMIP5 Model CWC Models

P (hPa)

P (hPa)

Observations
A-Train. cwc

P (hPa)

P (hPa)
P (hPa) P (hPa)

9 60 -30 0 30 60 9080.0
Latitude

P(hPa) P (hPa)

P (hPa)

0 0 30
Latitude

Jiang et al., J6R 2012

Tuesday, 2 July 13




