
Evaluation of clouds in large-
scale models

What? Why? How?
Part 3

Christian Jakob & Jean-Louis Dufresne

Evaluating fields more 
quantitatively

Represent model and observations on the same grid (interpolation)

Then treat each grid-point as one entry to the “forecast” and 
observation “vectors”.

Calculate quantitative error measures.

Mean and RMS errors
Mean error (Bias)

Note that in NWP the observations are often replaced (approximated by) the NWP analysis (initial 
state)
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Mean error example

ECMWF cloud forecast over Europe

The Taylor diagram
Background

Based on root-mean square error:
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We can write: E2 = E2 +E
02

with E = f �o and
E

0
=

s
1
N

N

Â
n=1

[( f

n

� f )� (o
n

�o)]2

E’ can further be modified as: E

02 = s2
f

+s2
o

�2s
f

s
o

R

where
R =

1
N

N

Â
n=1

( f

n

� f )(o
n

�o)

s
f

s
o

is the correlation coefficient. 

So E’ denotes a combination of the standard deviations of the forecast and observed fields as 
well as the correlation between them. Construct a diagram from this! 

For example:
fn - Forecast at point n
on - Observation at point n

c2 = a2 +b2�2abcosF
Law of cosines

The Taylor diagram
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Perfect forecast

Beware:

In its normal form 
the diagram has no 
information on 
biases!

Hence, as with all 
measures, do not 
believe a model to be 
great just because it 
looks great here!
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The Taylor diagram

CMIP3 model performance

Gleckler et al., JGR 2008

NH Trop

A Taylor 
diagram with 

bias 
information

CMIP3 model performance

Pincus et al., JGR, 2008

Metric
Origin:

French: métrique, from mètre, meter
Latin: metricus, relating to measurement
Greek:  metrike, (the art) of meter, feminine of 
metrikos, relating to measurement

Definitions:
A standard of measurement
Mathematics: A geometric function that 
describes the distances between pairs of points in 
a space
Poetic meter
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Metrics
Quantitative scalar error measures used for climate models are 
often referred to as performance METRICS
Pros:

provide quasi-objective evaluation
provide a history of performance
allow for “easy” comparison between models

Cons:
a single metric cannot capture the complexity of model 
behaviour
Metrics per se do not provide insight into the causes of model 
error
Metrics can be easily misinterpreted and can hinder model 
development 

Approaches to model evaluation

Model Overall assessment

Find processes and 
phenomena of 

relevance

Perform process 
studies (models + 

observations)
Select suitable 
process studies

Design model 
improvements

Data community Model user/ evaluation community Model development community

Application
NWP; seasonal; 

climate

Tuning (important but limited insight)

Great insight but of potentially limited 
importance

Regime-oriented model 
evaluation

While useful in the context of model application, the 
overall evaluation of model results provides limited to 
no insight into the causes of model error.
Can we devise techniques that decompose the model 
error into errors in different regimes? -> Divide and 
conquer
Identifying the regimes that contribute the most to 
the model error might then help us understand the 
underlying processes.
How do we define the regimes so that they have a 
“physical” meaning?
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Geographic regimes

Easiest regime definition: Use geographically distinct cloud regimes

Works well in the relatively steady subtropics

Total cloud cover

Geographic 
regimes

Observations

Histograms of instantaneous 
6-hourly cloud fraction as a 
function of latitude along the 
transect

Teixeira et al., JCL, 2012

Geography is not always 
this kind
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Vertical velocity sorting

Sort cloud properties by 
some other variable
Here: Instantaneous 
Vertical velocity at 
500 hPa

Tselioudis and Jakob, JGR, 2002

ω up

ω down

Model ISCCP

Vertical velocity sorting

Cloud cover in the tropics sorted by monthly mean vertical velocity

Bony an Dufresne, GRL, 2005

Compositing

Composite cloud 
fields around 
dynamical 
features
Most prominent: 
Extratropical 
cyclones

Klein and Jakob, MWR, 1999
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Composites 

Govekar et al., 2013, in the works

CloudSat/CALIPSO cloud cover composites around Southern Ocean 
Cyclones

MSLP
1.6 km

ω
4.5 km

RH
9.7 km

Obs Model Model-Obs Model-Obs2

Composites 
CloudSat/CALIPSO cloud cover composites around Southern Ocean 
Cyclones

Relationships between cloud and dynamical variables

Govekar et al., 2013, in the works

The ISCCP D1 data set provides joint histograms of the frequency of occurrence of clouds with a certain cloud top-
pressure and optical thickness in grid boxes of ca. 280x280km. These histograms have a strong relationship to 

cloud types (e.g., Rossow and Schiffer, 1999). The example below shows the mean histogram for 1999-2000 
averaged over an area in the Western Pacific (130-170 E, 10 N-10 S).

Deep 
convectionTransparent 

cirrus

Cirrus

Shallow 
convection

Frequency of occurrence (%)

Jakob and Tselioudis, 
GRL, 2003

ISCCP cloud regimes
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Cluster (and related analysis)
The basic idea

x

y

Measure the distance between points in 
the phase space and group them such 
that the distance to a point’s group mean 
is shorter than that any other group’s 
mean.

Each group is called a cluster.

Different mathematical techniques to do 
this exist - Hierarchical clustering, k-
means, Self-Organizing Maps

Beware: The analysis will find groups 
even if there is no real “clumping”! This 
can still be useful. (e.g., real numbers 
between 0 and 1)

CRE in CMIP5 models

SH Cloud regimes
K-Means Cluster analysis - 8 clusters

Haynes et al, JCL 2011
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SH Cloud regimes
Frequency of occurrence

DJF JJA Haynes et al, JCL 2011

Model freq of 
occurrence
Obs freq of 
occurence

Hybrid model/
obs regimes

Model error 
decomposition

ΔCRE = RFOrΔCREr
r=1

11

∑ + CRErΔRFOr
r=1

11

∑ + ΔRFOrΔCREr
r=1

11

∑

!

30-65 S

!

50-65 S

Total error = CRE error in regime + Error in occurrence + Cross 
Terms
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ISCCP cloud regimes
Tropics

Tan et al, JCL 2013

ISCCP cloud regimes
Tropics

Tan et al, JCL 2013

Things we did not talk 
about

... but maybe should have!

Process studies
Categorical forecast evaluation
Probabilistic forecast/projection 
evaluation
Evaluation of non-cloudy, but cloud-related 
phenomena (e.g., Tropical waves, ...)
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The future
Completing “the loop” on a regular basis - 
SO clouds example was almost there
Evaluating relationships, rather than 
single quantities, e.g., cyclone example
Bringing different approaches together 
more rigorously
Evaluating the weather in climate models - 
bringing communities together

How much rain comes 
from fronts?

Number of 
fronts (% of 

time)

Model-ERAIERA-Interim

Fraction of 
annual rainfall 
that is related 
to fronts (%)

ERA-Interim+GPCP Model-ERAI/GPCP

Thank you for...

... your attention.

... your great questions.

... your enthusiasm.

... making this school a real fun experience. 
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