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1. Aerosols

Definition: Solid or liquid particles suspended in a gas
Here: All particles in the atmosphere that are not cloud or precipitation particles 

e.g., Stier et al., Atmos. Chem. Phys. 2005
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1. Aerosols

Definition: Solid or liquid particles suspended in a gas
Here: All particles in the atmosphere that are not cloud or precipitation particles 

1.1 Chemical characterisation

Species Source (partly anthropogenic)
Mineral dust  (DU) windblown, mostly from deserts (also: roads, agriculture)
Sea salt  (SS) windblown
Sulfate  (SO4) combustion, biogeochemistry, volcanos
Soot, Black carbon (BC) combustion (fossil fuel, biomass, wildfires)
Organic matter (OM) combustion, biogeochemistry
Nitrate (NH4) air chemistry, fertilisers, combustion

e.g., Stier et al., Atmos. Chem. Phys. 2005
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1. Aerosols

Definition: Solid or liquid particles suspended in a gas
Here: All particles in the atmosphere that are not cloud or precipitation particles 

1.1 Chemical characterisation

Species Source (partly anthropogenic)
Mineral dust  (DU) windblown, mostly from deserts (also: roads, agriculture)
Sea salt  (SS) windblown
Sulfate  (SO4) combustion, biogeochemistry, volcanos
Soot, Black carbon (BC) combustion (fossil fuel, biomass, wildfires)
Organic matter (OM) combustion, biogeochemistry
Nitrate (NH4) air chemistry, fertilisers, combustion

Primary aerosols (emitted in form of particles)
Secondary aerosols (emitted as gas, transformed in the atmosphere to particles)

e.g., Stier et al., Atmos. Chem. Phys. 2005
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1.2 Mixing state

External mixture: Pure chemical composition per particle

Internal mixture: A particle consists of different chemical components
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1.2 Mixing state

External mixture: Pure chemical composition per particle

Internal mixture: A particle consists of different chemical components

Interactions of particles:

(i) microphysical (by collision and coalescence, as in clouds, see Hanna Pawlowska's talk)
(ii) chemical (e.g., condensation of SO2 onto dust or black carbon)

processing of aerosols also called “aging”

Sulfuric + Carbonaceous Carbonaceous

Sulfuric
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1.2 Size characterisation

e.g., Stier et al., Atmos. Chem. Phys. 2005

1 Å = 0.1 nm. H2 Molecule ~ 1.4 Å diameter
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1.4 Size distributions

Log-normal size distributions
typical: 2-3 different “modes”

by number  cloud interaction→

by surface  scattering→

by volume  mass→

Seinfeld and Pandis, Atmospheric Chemistry and Physics, Wiley, 2006
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1.4 Size distributions

Seinfeld and Pandis, Atmospheric Chemistry and Physics, Wiley, 2006

Simplified descriptions

< 1µm fine mode
> 1µm coarse mode

PM10:
Mass of particles with 
diameters > 10µm

PM2.5
PM1
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1.5 Continuity equation

In general necessary: one continuity equation per aerosol type and size class
May be simplified by considering just a few aerosol types and/or a few aerosol size classes 
(e.g., modes, or bulk representation)

qa – aerosol mass concentration 
Sa – aerosol sources/sinks

sources: emission (at surface)
chemical and microphysical transformation

sinks: dry deposition
wet deposition
chemical and microphysical transformation

Seinfeld and Pandis, Atmospheric Chemistry and Physics, Wiley, 2006
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1.6 Chemical transformations of sulfur dioxide to sulfate

Sulfur is emitted by combustion of fossil and biofuel in form of SO2

Oxidation in the air by OH radical:

Seinfeld and Pandis, Atmospheric Chemistry and Physics, Wiley, 2006
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1.6 Chemical transformations of sulfur dioxide to sulfate

Sulfur is emitted by combustion of fossil and biofuel in form of SO2

Oxidation in the air by OH radical:

Oxidation within cloud and precipitation particles (aqueous chemistry):

dissolution of gaseous SO2 proportional to its partial 
pressure (Henry's law)

further oxidation consuming ozone

Aqueous production of sulfate usually much more efficient.

Seinfeld and Pandis, Atmospheric Chemistry and Physics, Wiley, 2006
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1.7 Cloud processing of aerosols

(i) aqueous chemistry (see example above)

(ii) coagulation inside cloud droplets: 
 → particles within cloud droplets / ice crystals from one internally mixed particle
 → usually much better cloud condensation nuclei capabilitites

David Neubauer, ETH-IAC
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1.8 Aerosol sinks

1. Dry deposition

Sedimentation velocity (see Hanna Pawlowska's talk)
 → Stokes regime, vT ~ ra²

since aerosol particles are small, fall velocity usually relatively slow

see Hanna Pawlowska's talk

v
t



17/90|

1.8 Aerosol sinks

1. Dry deposition

Sedimentation velocity (see Hanna Pawlowska's talk)
 → Stokes regime, vT ~ ra²

since aerosol particles are small, fall velocity usually relatively slow

2. Wet deposition

(i) Aerosols inside cloud droplets / ice crystals
- the condensation/ice nuclei and/or aerosols 

taken up by collision/coalescence
- Deposition as rain forms in clouds

(ii) Aerosols below precipitating clouds
- taken up by collision/coalescence

Where present, wet deposition is much more effective.

see Hanna Pawlowska's talk
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1.9 Aerosol lifetime

For a stationary situation,           , in the global mean, the average aerosol lifetime is:

the total atmospheric mass divided by the average source strength.

For sulfate, Ma ~ 4 Mt, Sa ~ 200 Mt yr-1  → τa ~ 1 week
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1.10 Aerosol distributions: Kinne climatology

Kinne et al., J. Adv. Model. Earth Syst. 2013

optical depth 
(AOD)

single 
scattering 
albedo

absorption 
AOD

assymetry 
parameter
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1.10 Aerosol distributions: Kinne climatology

Kinne et al., J. Adv. Model. Earth Syst. 2013

400 nm

550 nm

1 µm

10 µm
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1.10 Aerosol distributions: Kinne climatology

Kinne et al., J. Adv. Model. Earth Syst. 2013

6 – 12 km

3 – 6 km

1 – 3 km

0 – 1 km 
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1.11 Light scattering and absorption: direct and semi-direct effects

 → aerosol particles scatter sunlight
    (appear white from above)

http://i.telegraph.co.uk/mu
ltimedia/archive/01389/sh
ip-pollution-
460_1389626c.jpg
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1.11 Light scattering and absorption: direct and semi-direct effects

 → aerosol particles scatter sunlight
    (appear white from above)

 → some also absorb sunlight
    (appear black)

http://www.climateactionprogramme.
org/images/uploads/articles/ship
%20smoke.jpg

http://i.telegraph.co.uk/mu
ltimedia/archive/01389/sh
ip-pollution-
460_1389626c.jpg
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1.11 Light scattering and absorption: direct and semi-direct effects

 → Scattering acts to cool system
    (top-of-atmosphere) and surface
    no effect within the atmosphere

 → Absorption acts to warm the system
    cools the surface
    warms the atmosphere

MODIS 13 August 2006

Albedo 
enhancement

Albedo reduction

e.g. Peters et al., Atmos. Chem. Phys. 2011
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1.12 Semi-direct effect?

Large-eddy simulations

 → Aerosol absorption heats the upper boundary layer
    and reduces inversion and subsequently cloudiness

 → could be opposite if aerosol layer is above clouds

Ackerman et al., Science 2000
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2. No particles – no fog

Thorsten Mauritsen, Max-Planck-Institut für Meteorologie
Zoran Ristovski, Queensland University           

Youtube “No particles no fog”
http://www.youtube.com/watch?v=EneDwu0HrVg
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2.1 Köhler equation

(see lecture by Hanna Pawlowska)

curvature effect solution effect
(Kelvin term) (Raoult term)

  in thermodynamic equilibrium
S – saturation ratio 

(saturation vapour pressure above solution droplet vs. saturation vapour pressure over flat 
 water surface)

 ↔ relative humidity

r – haze droplet radius

B – aerosol term
 → dependent on aerosol mass ~ ra³
 → dependent on solubility. 

Presentation by Hanna Pawlowska
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2.1 Köhler curve

(i) Haze particles stable at low 
    humidities

(ii) Cloud droplets do not nucleate at 
    100% relative humidity

(iii) Aerosol particle size very important

(iv) Solubility relevant

Presentation by Hanna Pawlowska
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Koren et al., Geophys. Res. Lett. 2007

2.2 Some results on basic aerosol-cloud interactions

true-colour image of dissipating cumulus

background gradients (molecular scattering) removed

cloud masked and increased sensitivity
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2.2 Some results on basic aerosol-cloud interactions

Statistical relationship between aerosol optical depth (logarithm of solar radiation dampening) 
and precipitation intensity

    At each grid-point for one season of data 
    difference between upper and lower tercile in 
    aerosol optical depth (dry aerosol) 
    in rain intensity [mm hour-1 ]

Boucher and Quaas, Nature Geosci. (comment to Koren et al.) 2013

Rain

A
O

D
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2.2 Some results on basic aerosol-cloud interactions

Statistical relationship between aerosol optical depth (logarithm of solar radiation dampening) 
and precipitation intensity

    At each grid-point for one season of data 
    difference between upper and lower tercile in 
    aerosol optical depth (wet aerosol) 
    in rain intensity [mm hour-1 ]

Boucher and Quaas, Nature Geosci. (comment to Koren et al.) 2013

Rain

A
O

D
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Grandey et al., Atmos. Chem. Phys. 2013

Statistical relationship between AOD and cloud cover

Dry AOD

Wet AOD

No scavenging by 
convective 
precipitation
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Grandey et al., Atmos. Chem. Phys. 2013

Statistical relationship between AOD and cloud cover

Dry AOD

Wet AOD

No scavenging by 
convective 
precipitation
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Koren et al., Atmos. Chem. Phys. 2010

2.2 Some results on basic aerosol-cloud interactions

MODIS cloud fraction as a function of AOD for classes of re-analysis relative humidity at 350 hPa
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Koren et al., Atmos. Chem. Phys. 2010

2.2 Some results on basic aerosol-cloud interactions

MODIS cloud fraction as a function of AOD for classes of re-analysis relative humidity at 350 hPa

 → even for RH < 25% cloud fractions of up to 90%. 
 → subgrid-scale variability of humidity essential (strong non-linearity of swelling)

 → see Poster by Vera Schemann and Matthias Brück
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2.3 Radiation sensitivity: First aerosol indirect effect

See Hélène Chepfer's lecture:

(vertically homogeneous droplet size distribution)

with re = β rv    and                                     the total cloud droplet number concentration

 optical depth a cube-root function of droplet concentration, Nd.

In two-stream approximation for the cloud albedo, α:

For constant droplet spectrum shape and liquid water path:

→ first aerosol indirect effect (Twomey effect)

Presentation by Hélène Chepfer; Ackerman et al., J. Atmos. Sci. 2002
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Presentation by Hanna Pawlowska; Hoose and Möhler, Atmos. Chem. Phys. 2012
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2.4 Ice crystals

 → First indirect 
    effect
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Presentation by Hanna Pawlowska; Hoose and Möhler, Atmos. Chem. Phys. 2012
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Presentation by Hanna Pawlowska; Hoose and Möhler, Atmos. Chem. Phys. 2012
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heterogeneous 
freezing of 
cloud droplets

 → effect ?

2.4 Ice crystals
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e.g., Storelvmo et al., 2008

2.5 Mixed-phase clouds

(i) Freezing of drops is a function of droplet size: 
 → In larger drops the probability of formation of an ice germ is larger

(ii) Ice crystals grow at the expense of liquid droplets:
 → Bergeron-Findeisen process

Saturation vapour pressure
over liquid water
over ice

p v,
sa

t [
hP

a]
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2.6 Glaciation and de-activation effects

(i) first indirect effect (homogeneous & deposition freezing)

(ii) Bergeron-Findeisen process:
     if IN lead to early onset of freezing, the entire cloud might glaciate
      → precipitation  reduced lifetime→

(iii) De-activation of IN:
      if sulfate condenses onto dust particles, they may not serve as IN any more
  → longer lifetime ?

Lohmann, J. Atmos. Phys. 2002; Storelvmo et al., Env. Res. Lett. 2008
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Presentation by Hanna Pawlowska

2.7 Microphysics

Terminal fall velocity depends on particle radii

 → particles with different sizes fall at different speeds

n(r)
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Presentation by Hanna Pawlowska

2.7 Microphysics

Terminal fall velocity depends on particle radii

 → particles with different sizes fall at different speeds

 → shift in droplet size spectrum affects collision/coalescence process

n(r)
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2.8 Cloud lifetime effect

Albrecht, Science 1989; Stevens and Feingold, Nature 2009
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2.8 Cloud lifetime effect

 → larger cloud liquid water path
 → larger cloud fraction

Albrecht, Science 1989; Stevens and Feingold, Nature 2009
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2.9 Water budget consideration

 → Total water (water vapour, cloud water, precipitation water) is conserved.
 → Changes in accumulated precipitation (at a large scale over long times) possible only if 

evaporation fluxes change

    A – Area
    t – time
    p(P) – probability of occurrence of precipitation
    I(P) – intensity of precipitation

 → Precipitation characteristics [ p(P) and I(P) ] not constrained by this.
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2.10 Feedbacks, “dampening”

Large-eddy simulations for different cases 
 → often shorter rather than longer cloud lifetimes due to faster evaporation of smaller droplets
 → liquid water path response also different for different cloud regimes 

Jiang et al., Geophys. Res. Lett. 2006; Ackerman et al., Nature 2004

    10                       100                   1000
Cloud droplet concentration (cm-3)
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2.11 Freezing effect: Invigoration

Rosenfeld et al., Science 2008
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Rosenfeld et al., Science 2008

(i) delayed 
precipitation

 → more liquid 
water brought to 
freezing level
 
(ii) smaller 
droplets freeze 
later (higher) 

 → grow more 
 → more liquid 

water freezes

→. more latent 
heat release

2.11 Freezing effect: Invigoration
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Khain, Env. Res. Lett. 2008

2.12 Results from small scales on condensate

less 
precipitation

more
precipitation

increasing condensate generation
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Khain, Env. Res. Lett. 2008

2.12 Results from small scales on condensate
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3. Anthropogenic aerosols

3.1 Monitoring Atmospheric Composition and Climate: MACC reanalysis 
(see Poster Karoline Block)

Bellouin, Quaas, Boucher, Morcrette, Atmos. Chem. Phys. 2013

Anthropogenic AOD:
Global annual mean: 0.047
(~ 30%, large regional variability)

Total Aerosol optical depth (2003-05)
Global annual mean: 0.173
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3.2 Anthropogenic aerosols: Kinne climatology

Kinne et al., J. Adv. Model. Earth Syst. 2013
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3.2 Anthropogenic aerosols: Kinne climatology

Kinne et al., J. Adv. Model. Earth Syst. 2013
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3.3 Anthropogenic direct effect: Soot

Bond et al., J. Geophys. Res. 2013
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3.4 Anthropogenic aerosol indirect radiative forcing

Forcing Radiation     Cloud          Aerosol 
particles      perturbation
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3.4 Anthropogenic aerosol indirect radiative forcing

Forcing Radiation     Cloud          Aerosol 
particles      perturbation

First 
indirect 
effect

Second indirect effect 
Cloud fraction f, Water path L, 
Top temperature Ttop
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3.4 Anthropogenic aerosol forcing: Quantitative estimates

          direct      aerosol-cloud effect              total aerosol
   

compilation by U. Lohmann, ETH
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In CMIP3 climate models:
Climate sensitivity uncertainty 

Spread in aerosol forcing

Kiehl, Geophys. Res. Lett., 2007

4. Importance for climate
4.1 Link to climate sensitivity

Climate Sensitivity (K) Aerosol Forcing (Wm-2)

Spread in global warming due to CO2 doubling
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In CMIP3 climate models:
Climate sensitivity uncertainty ↔ Aerosol forcing uncertainty 

Spread in global warming due to CO2 doubling Spread in aerosol forcing

Kiehl, Geophys. Res. Lett., 2007

4.1 Link to climate sensitivity

Climate Sensitivity (K) Aerosol Forcing (Wm-2)
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Rotstayn and Lohmann, J Climate 2002

Simulated change in sulfate 
aerosol burden [mg m-2 ], annual 
mean peak at 16 mg m-2

Strong forcing: -1.8 W m-2 in 
global mean

4.2 Effects on dynamics: Sahel drying
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Rotstayn and Lohmann, J Climate 2002

Simulated change in sulfate 
aerosol burden [mg m-2 ], annual 
mean peak at 16 mg m-2

Strong forcing: -1.8 W m-2 in 
global mean

Simulated corresponding surface 
temperature change [K ]
Peak at -8 K, -2 K widespread over 
Northern hemisphere mid- to high 
latitudes

4.2 Effects on dynamics: Sahel drying



63/90|
Rotstayn and Lohmann, J Climate 2002

Trends in annual-mean 
precipitation 

Top: Simulated 
Bottom: Observed

     -2   -1  -0.5    -0.1 0.1     0.5   1   2  mm day-1 century-1

4.2 Effects on dynamics: Sahel drying
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Booth et al., Nature 2012

Temperature 
anomalies North 
Atlantic Ocean [K ]

Observations
HadGEM2-ES

         1880           1920            1960            2000

  
0.5

0.0

-0.5

4.3 Effects on dynamics: North Atlantic Oscillation
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Booth et al., Nature 2012

Simulated
sea surface 
temperature
[°C ]

Simulated
surface 
solar 
radiation
[W m-2 ]

         1880           1920            1960            2000

  
192

188

184

21.4

21.0

20.6

20.2

4.3 Effects on dynamics: North Atlantic Oscillation
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Booth et al., Nature 2012

Simulated
sea surface 
temperature
[°C ]

Simulated
surface 
solar 
radiation
[W m-2 ]

         1880           1920            1960            2000

  
192

188

184

21.4

21.0

20.6

20.2

4.3 Effects on dynamics: North Atlantic Oscillation
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4.4 Effects on dynamics: Hurricanes

aerosol droplet cloud
optical effective fraction
depth radius

(model) (model) (model)

Dunstone et al., Nature Geosci. 2013
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4.4 Effects on dynamics: Hurricanes

aerosol droplet cloud
optical effective fraction
depth radius

(model) (model) (model)

Dunstone et al., Nature Geosci. 2013
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4.4 Effects on dynamics: Hurricanes

aerosol droplet cloud
optical effective fraction
depth radius

(model) (model) (model)

Dunstone et al., Nature Geosci. 2013
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Kuhlmann and Quaas, Atmos. Chem. Phys. 2010

“Elevated heat pump”-
hypothesis

Absorption of sunlight over 
Tibetan Plateau enforces 
monsoon circulation?

Tibetan plateau

4.5 Effects on dynamics: Monsoon
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Kuhlmann and Quaas, Atmos. Chem. Phys. 2010

Heating rates [K day-1] by aerosol 
(CALIPSO lidar satellite data and radiative transfer modelling)

Himalaya

Tibetan Plateau

4.5 Effects on dynamics: Monsoon
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Bollasina et al., Science 2011

4.5 Effects on dynamics: Monsoon

Linear trends
1950-1999 in
June-September
precipitation

[mm day-1 (50 yr)-1]

Greenhouse 
gases Aerosols

BothCRU Obs
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Bollasina et al., Science 2011

4.5 Effects on dynamics: Monsoon

Linear trends
1950-1999 in
June-September
precipitation

[mm day-1 (50 yr)-1]

Slowdown of 
meridional 
overturning
compensates
hemispherical

 energy imbalance
Greenhouse 
gases Aerosols

BothCRU Obs
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[Wm-2] 

Surface radiative forcing
due to anthropogenic aerosol 

Cherian, Venkataraman, Quaas, Ramachandran, J. Geophys. Res., 2013

4.5 Effects on dynamics: Monsoon
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Monsoon precipitation change 
due to anthropogenic aerosol 

[mm d-1] [Wm-2] 

Surface radiative forcing
due to anthropogenic aerosol 

Cherian, Venkataraman, Quaas, Ramachandran, J. Geophys. Res., 2013

4.5 Effects on dynamics: Monsoon
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Monsoon precipitation change 
due to anthropogenic aerosol 

[mm d-1] 

Cherian, Venkataraman, Quaas, Ramachandran, J. Geophys. Res., 2013
Ghosh et al., Atmos. Sci. Lett. 2009             

Observed precipitation trend 
 since 1950 [mm yr-1]

4.5 Effects on dynamics: Monsoon
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4.6 Stabilising climate feedbacks
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Climate feedbacks

Global temperature

Marine 
ecology

Phytoplankton
abundance and

speciation

Radiation
budget

Cloud albedo 

Cloud condensation
 nuclei

Sulfate aerosol

SO2

DMS

DMS

Atmosphere

Ocean

CLAW : Charlson, Lovelock, Andreae and Warren
            (Nature 1987)

DMS – di-methyl-sulfide
S(CH3)2
emitted by plankton
(temperature-dependent)

Charlson et al., Nature 1987

4.6 Stabilising climate feedbacks
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CLAW : Charlson, Lovelock, Andreae and Warren
            (Nature 1987)

DMS – di-methyl-sulfide
S(CH3)2
emitted by plankton
(temperature-dependent)

Charlson et al., Nature 1987

4.6 Stabilising climate feedbacks

Climate feedbacks

Global temperature

Marine 
ecology

Phytoplankton
abundance and

speciation

Radiation
budget

Cloud albedo 

Cloud condensation
 nuclei

Sulfate aerosol

SO2

DMS

DMS

Atmosphere

Ocean

+ -
+

+
+
+

+ +
+

+ -
negative 
feedback
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Leaitch et al., Atmos. Env. 2011

4.6 Stabilising climate feedbacks
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Paasonen et al., Nature Geoscience 2013

4.6 Stabilising climate feedbacks
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Paasonen et al., Nature Geoscience 2013

4.6 Stabilising climate feedbacks
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4.7 Geoengineering

Kiel Earth Institute, 2011
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India 

814 K

Shindell et al., Science 2012

4.8 Co-benefits of improving air quality and mitigating climate change

 → Soot bad for health
 → BC warms climate by absorption of sunlight
 → But: co-emitted SO

2
 cools, BC might have (cooling) indirect  effect on clouds
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India 

814 K

Shindell et al., Science 2012

4.8 Co-benefits of improving air quality and mitigating climate change

 → Soot bad for health
 → BC warms climate by absorption of sunlight
 → But: co-emitted SO

2
 cools, BC might have (cooling) indirect  effect on clouds

If maximum-feasible policies are implemented to cut methan and black carbon:

   0.4 K less warming by 2050     1.7M less premature deaths globally
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 Effects of clouds and precipitation on aerosols 
 aqueous chemistry and cloud processing enhances aerosol→
 in-cloud / below-cloud scavenging efficiently removes aerosol→
 aerosol grows to haze in the vicinity of clouds→

 Effects of aerosols on clouds and precipitation
 additional aerosol enhances cloud particle concentrations→

    enhancing cloud albedo (first indirect effect)
 alter cloud microphysical processes (precipitation formation, →

    mixed-phase processes, latent heating; second indirect effect)
 subsequently change environment and dynamics (buffering?)→
 absorption may alter cloud characteristics (semi-direct effect)→

Conclusions 1/2
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 aqueous chemistry and cloud processing enhances aerosol→
 in-cloud / below-cloud scavenging efficiently removes aerosol→
 aerosol grows to haze in the vicinity of clouds→

 Effects of aerosols on clouds and precipitation
 additional aerosol enhances cloud particle concentrations→

    enhancing cloud albedo (first indirect effect)
 alter cloud microphysical processes (precipitation formation, →

    mixed-phase processes, latent heating; second indirect effect)
 subsequently change environment and dynamics (buffering?)→
 absorption may alter cloud characteristics (semi-direct effect)→

Conclusions 1/2
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 Anthropogenic radiative forcings 
 models show substantial direct and indirect effects→

                              ( -0.4 Wm-2 plus -0.9 Wm-2 )

 Quantiative understanding essential
 for climate sensitivity→
 for weather in Africa, Europe, America, India→

                       drought  NAO  Hurricanes Monsoon
 stabilising feedbacks→
 geoengineering→
 climate mitigation and air quality improvement policies→

Conclusions 2/2
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 Anthropogenic radiative forcings 
 models show substantial direct and indirect effects→

                              ( -0.4 Wm-2 plus -0.9 Wm-2 )

 Quantiative understanding essential
 for climate sensitivity→
 for weather in Africa, Europe, America, India→

                       drought  NAO  Hurricanes Monsoon
 stabilising feedbacks→
 geoengineering→
 climate mitigation and air quality improvement policies→

 Do you have an AA battery for me?
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